[Steinberg's theorem](#page-2-0) [Our generalization](#page-7-0) [Refl. repns. of Coxeter groups](#page-15-0) [Apply to Coxeter groups](#page-25-0)

Exterior powers of reflection representations

胡泓昇 / Hongsheng Hu

Beijing International Center for Mathematical Research, Peking University (postdoc)

The 16th National Conference on Algebra Huaqiao University, Quanzhou, China Nov. 15–20, 2023

- 1 [Steinberg's theorem on reflection representations.](#page-2-0)
- ² [Our generalization.](#page-7-0)

utline

- ³ [Classification of reflection representations of Coxeter](#page-15-0) [groups.](#page-15-0)
- ⁴ [Apply the generalized Steinberg's theorem to Coxeter](#page-25-0) [groups.](#page-25-0)

1 [Steinberg's theorem on reflection representations.](#page-2-0)

[Our generalization.](#page-7-0)

- ³ [Classification of reflection representations of Coxeter](#page-15-0) [groups.](#page-15-0)
- ⁴ [Apply the generalized Steinberg's theorem to Coxeter](#page-25-0) [groups.](#page-25-0)

Settings in Steinberg's theorem:

- V: an *n*-dim'l vector space with inner product $(-|-)$, e.g., a Euclidean space or a complex Hilbert space. • $\{v_1, \ldots, v_n\}$: a basis of V (not necessarily orthonormal).
- \bullet W: the subgroup of $GL(V)$ generated by orthogonal reflections s_i w.r.t. v_i , $i = 1, \ldots, n$.
- V is a W-module by the natural action.

The exterior power $\bigwedge^d V, d = 0, 1, \ldots, n$, admits a W-action

$$
w(u_1 \wedge \cdots \wedge u_d) = (wu_1) \wedge \cdots \wedge (wu_d).
$$

In particular, $\bigwedge^0 V$ is the 1-dim'l representation with trivial W-action, and $\bigwedge^n V$ is the 1-dim'l representation det.

Steinberg's theorem

Under these settings, we have:

Theorem (R. Steinberg, 1968)

Suppose V is a simple W-module. Then the W-modules

$$
\bigwedge\nolimits^d V, \quad d=0,1,\ldots,n,
$$

are simple and pairwise non-isomorphic.

• The proof relies on the existence of the inner product which stays invariant under the W -action, and do induction on n.

(Here $n = \dim V = \text{card } \{ \text{defining generators of } W \}$.)

- A special case: (W, S) be an irreducible finite Coxeter group, and $V = V_{geom}$ be its geometric representation.
- The theorem of Steinberg can be generalized to the cases where the inner product does not exist.

[Steinberg's theorem](#page-2-0) [Our generalization](#page-7-0) [Refl. repns. of Coxeter groups](#page-15-0) [Apply to Coxeter groups](#page-25-0)

Outline

1 [Steinberg's theorem on reflection representations.](#page-2-0)

² [Our generalization.](#page-7-0)

- ³ [Classification of reflection representations of Coxeter](#page-15-0) [groups.](#page-15-0)
- ⁴ [Apply the generalized Steinberg's theorem to Coxeter](#page-25-0) [groups.](#page-25-0)

Definitions:

- A linear map s on an *n*-dim'l vector space V is called a reflection if:
	- (1) \exists a linear hyperplane H_{s} s.t. $\left. \mathsf{s} \right|_{H_{\mathsf{s}}}= \mathsf{Id}_{H_{\mathsf{s}}},$ $(2)\; \exists\; \alpha_s \in V\setminus \{0\}$ s.t. $\; s(\alpha_s)=\lambda_s \alpha_s \; \text{for some} \; \lambda_s \neq 1.$ α_s is called a *reflection vector* of *s*.
- Let W be a group and S be a set of generators. A representation $\rho : W \to GL(V)$ is called a reflection representation of (W, S) if: $\rho(s)$ is a reflection on V for any $s \in S$.

The first generalization

From now on, we work over a field F of char 0, and fix a group W with a finite set $S = \{s_1, \ldots, s_m\}$ of generators.

Theorem (H. 2023)

Let (V, ρ) be an *n*-dim'l irreducible reflection representation of (W, S) . Then the W-modules

$$
\bigwedge\nolimits^d V, \quad d=0,1,\ldots,n,
$$

are simple and pairwise non-isomorphic.

We require char $F = 0$ because we need the following:

Lemma (C. Chevalley, 1955)

Suppose W is a group and V, U are finite-dim'l semisimple W-modules over a field F of char 0. Then the W-module $V \otimes U$ is also semisimple.

Corollary

In our theorem, $\bigwedge^d V$ is semisimple since $\bigwedge^d V \hookrightarrow \bigotimes^d V.$

Instead of doing induction on *n* or *m*, our proof of simplicity is by showing

$$
\mathsf{End}_W(\bigwedge^d V) = F
$$

by linear algebra and some combinatorics on directed graphs.

The second generalization

Exterior powers of different reflection representations are also different.

Theorem (H. 2023)

Let (V_1, ρ_1) and (V_2, ρ_2) be two irreducible reflection representations of (W, S) of dim n_1 and n_2 , resp. If

$$
\bigwedge^{d_1} V_1 \simeq \bigwedge^{d_2} V_2
$$

as $W\!$ -modules for some d_1,d_2 with $0 < d_i < n_i,$ then

$$
d_1 = d_2
$$
 and $(V_1, \rho_1) \simeq (V_2, \rho_2)$.

Remarks:

- \bullet In most cases there is not a W-invariant inner product on V.
- The reflection vectors $\alpha_1, \ldots, \alpha_m$ are not necessarily a basis of V.

But the two points are crucial in Steinberg's proof of his theorem.

A Poincaré-like duality

Proposition (Who? Hu?)

Let $\rho: W \to GL(V)$ be an *n*-dim'l representation of W. Then

$$
\textstyle \bigwedge^{n-d}V \simeq (\bigwedge^d V)^* \bigotimes (\det \circ \rho)
$$

as W -modules for all $d=0,1,\ldots,n$, where $(-)^*$ denotes the dual repn.

Question:

Is there any geometric interpretation (or in other manners) of this duality?

Outline

1 [Steinberg's theorem on reflection representations.](#page-2-0)

[Our generalization.](#page-7-0)

- ³ [Classification of reflection representations of Coxeter](#page-15-0) [groups.](#page-15-0)
- ⁴ [Apply the generalized Steinberg's theorem to Coxeter](#page-25-0) [groups.](#page-25-0)

Definition

Let S be a finite set.

Given $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ for any $s, t \in S$ with $s \neq t$ such that $m_{st} = m_{ts}$.

The corresponding *Coxeter group W* is defined by a presentation

$$
W = \langle s \in S \mid s^2 = e, \forall s \in S; \newline (st)^{m_{st}} = e, \forall s, t \in S \text{ with } m_{st} < \infty \rangle.
$$

By convention, $m_{ss} := 1, \forall s \in S$.

• Historical interlude:

The concept of Coxeter groups originates from Euclidean reflection groups:

H. S. M. Coxeter proved in 1930's that any discrete reflection group in a Euclidean space admits such a presentation.

• Question:

Can we realize any Coxeter group as a reflection group on some space?

From now on, we fix a Coxeter group (W, S) , and work over $\mathbb R$ or $\mathbb C$.

A refl. repn. of Coxeter groups (the geometric repn.)

Let $\mathcal{V}_{geom}=\bigoplus_{s\in S}\mathbb{R}\alpha_s$ endowed with a bilinear form

$$
(\alpha_s|\alpha_t):=-\cos \tfrac{\pi}{m_{st}},\,\forall s,t\in S.
$$

(Bourbaki 1968) V_{geom} is a reflection repn. of W via

$$
s(\alpha_t):=\alpha_t-2(\alpha_t|\alpha_s)\alpha_s.
$$

The bilinear form $(-|-)$ is W-invariant, i.e.,

$$
(wv|wu)=(v|u).
$$

• Remark:

Although we have a W-invariant bilinear form on V_{geom} , but it is not an inner product in general. It is an inner product if and only if W is a finite group.

• Question:

Can we find out and classify all the reflection representations of (W, S) ?

Recall that a reflection representation of a Coxeter group (W, S) is a representation $\rho: W \to GL(V)$ such that each $s \in S$ acts by a reflection.

For simplicity in presentation, we consider a specific class of reflection representations defined as follows.

Definition

If the reflection vectors $\{\alpha_s\mid s\in S\}$ form a basis for V , then we call (V, ρ) a generalized geometric representation of (W, S) .

The classification of all refl. repn's of Coxeter groups

Theorem (informally presented, H. 2021)

The isomorphism classes of generalized geometric representations of (W, S) is parameterized by

$$
\{((k_{st})_{s,t\in S,s\neq t},\chi)\mid k_{st}: \text{ certain "numbers",}
$$

$$
\chi: H_1(\widetilde{G},\mathbb{Z})\to \mathbb{C}^\times \text{ a character}\},\
$$

where G is certain simple graph determined by the numbers $(k_{st})_{s,t\in S, s\neq t}$, and $H_1(G,\mathbb{Z})$ is the first integral homology group of G.

The classification of all refl. repn's of Coxeter groups

In general, any reflection representation of (W, S) can be described explicitly as well.

(It is a quotient representation of a generalized geometric representation of certain quotient Coxeter group of W , quotiented by a subrepresentation with trivial group action.)

The results below can also be stated for reflection representations in general.

[Steinberg's theorem](#page-2-0) [Our generalization](#page-7-0) [Refl. repns. of Coxeter groups](#page-15-0) [Apply to Coxeter groups](#page-25-0)
 $\begin{array}{ccc}\n0.0000 & 0.00000 & 0.00000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.00$ 000000000

Proposition (informally presented, H. 2021)

Let (V, ρ) be a generalized geometric representation of (W, S) corresponding to a datum

$$
\big((k_{st})_{s,t\in S,s\neq t},\chi\big)
$$

where the numbers $(k_{st})_{s,t\in S,s\neq t}$ are "generic". Then there exists a nonzero *W*-invariant bilinear form on V if and only if

$$
\operatorname{Im}\chi\subseteq\{\pm1\}.
$$

In other words, "most" reflection representation does not admit a nonzero W -invariant bilinear form.

[Steinberg's theorem](#page-2-0) **[Our generalization](#page-7-0)** [Refl. repns. of Coxeter groups](#page-15-0) [Apply to Coxeter groups](#page-25-0)
 $\begin{array}{cc}\n00000 & 000000 \\
00000 & 0000000 \\
0000 & 00000\n\end{array}$ 00000 00000000 000000000

Example: The affine Weyl group A_2

• Let W be the affine Weyl group A_2 ,

$$
W=\langle s_0,s_1,s_2\mid s_i^2=(s_is_j)^3=e,\forall i,j.\rangle
$$

 k_{st} 's must be 1. The graph $G:$ $s_1 \xrightarrow{\sim} s_2$ $S_{\r{0}}$

- The group $H_1(\widetilde{G}, \mathbb{Z}) \simeq \mathbb{Z}$ is generated by the cycle.
- Characters of $H_1(\widetilde{G}, \mathbb{Z}) = \{ \chi : \mathbb{Z} \to \mathbb{C}^\times \} = \mathbb{C}^\times$.
- \bullet Gen. geom. repn's $\overset{1\ :\ 1}{\longleftrightarrow}\mathbb{C}^{\times},$ and only two of them admit nonzero W -invariant bilinear form, i.e., the two corresponding to ± 1 . (The standard geom. repn. $\leftrightarrow 1$)

Outline

- **1** [Steinberg's theorem on reflection representations.](#page-2-0)
- [Our generalization.](#page-7-0)
- ³ [Classification of reflection representations of Coxeter](#page-15-0) [groups.](#page-15-0)
- ⁴ [Apply the generalized Steinberg's theorem to Coxeter](#page-25-0) [groups.](#page-25-0)

- The homology group $H_1(\widetilde{G}, \mathbb{Z})$ is a finitely generated free abelian group.
- Thus the set of characters $\chi: H_1(\widetilde{G},\mathbb{Z}) \to \mathbb{C}^\times$ is identified to a torus

$$
(\mathbb{C}^{\times})^r \text{ where } r = \text{rank } H_1(\widetilde{G}, \mathbb{Z}).
$$

Under this identification, we have:

Proposition (informally presented, H. 2021)

Fix a set of "generic" numbers $(k_{st})_{s,t\in S,s\neq t}$ such that G is connected.

Then the characters of $H_1(\widetilde{G}, \mathbb{Z})$ corresponding to reducible generalized geometric representations form a "density zero" subset of $(\mathbb{C}^{\times})^r$.

In other words, "most" reflection representations are irreducible.

(In the A_2 example,

the generalized geometric representations $\overset{1\ :\ 1}{\longleftrightarrow}\mathbb{C}^{\times},$ only the one corresponding to 1 is reducible.)

Therefore, we can apply our generalization of Steinberg's theorem to all the irreducible reflection representations of (W, S) .

Then we obtain much more irreducible representations of W which are pairwise non-isomorphic.

• Remark:

Some mild conditions on the reflection vectors $\{\alpha_s\mid s\in\mathcal{S}\}$ yield that the reflection representations corresponds to Lusztig's a -function value 1 (e.g., the generalized geometric representations.).

It would be interesting to consider the a-function values of refl. repn's in general and their exterior powers.

- H. Hu. On exterior powers of reflection representations. Bull. Aust. Math. Soc., online, 2023.
- H. Hu. On exterior powers of reflection representations, II. In preparation.
- H. Hu. Reflection representations of Coxeter groups and homology of Coxeter graphs. Algebr. Represent. Theory, accepted, arXiv:2306.12846, 2023.
- H. Hu. Representations of Coxeter groups of Lusztig's a-function value 1.

Preprint, arXiv:2309.00593, 2023.

Thank you for your attention!