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Let (W ,S) be a Coxeter group of finite rank, that is:

S is a finite set;

W is a group defined by a presentation (i.e., generators and relations)

W = 〈s ∈ S | s2 = e,∀s ∈ S ;

(st)mst = e,∀s, t ∈ S with mst <∞〉.

where (mst)s,t∈S ,s 6=t are given elements in N≥2 ∪ {∞} such that
mst = mts .

By convention, mss := 1, ∀s ∈ S .
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A Coxeter group (W ,S) is uniquely determined by the Coxeter graph:

set of vertices: S ,

set of edges: s — t if mst ≥ 3, and the edge is labelled by mst .

For example, the symmetric group Sn with the generators si := (i , i + 1),
i = 1, . . . , n − 1, is a Coxeter group with the corresponding Coxeter graph

s1 s2 sn−2 sn−1

· · ·

with all edges are labelled by 3.

• Historical interlude:

The concept of Coxeter groups originates from Euclidean reflection groups.
H. S. M. Coxeter proved in 1930’s that any discrete reflection group in a
Euclidean space admits such a presentation.
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Q: Can we realize any Coxeter group as a reflection group on some space?

Let Vgeom =
⊕

s∈S Rαs endowed with a bilinear form

(αs |αt) := − cos π
mst
, ∀s, t ∈ S .

(c.f. Bourbaki 1968) Vgeom is a reflection representation of W via

s(αt) := αt − 2(αt |αs)αs , ∀s, t ∈ S .

The bilinear form (−|−) is W -invariant, i.e., (wv |wu) = (v |u).

• Remark:

Although we have a W -invariant bilinear form on Vgeom, but it is not an
inner product in general. It is an inner product if and only if W is a finite
group.

Q: Can we find out and classify all the “reflection representations” of a
Coxeter group (W , S)?
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Definitions:

An involutive linear map s on an finite dim’l vector space V is called
a reflection if
(1) there exists a linear hyperplane Hs such that s|Hs = IdHs ,
(2) there exists a nonzero vector αs such that s(αs) = −αs .

The hyperplane Hs is called the reflection hyperplane of s, and the
vector αs is called a reflection vector of s.

A representation ρ : W → GL(V ) is called a reflection representation
of (W ,S) if ρ(s) is a reflection on V for any s ∈ S .
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For simplicity in presentation, we assume mst <∞, ∀s, t ∈ S , and
consider a specific class of reflection representations defined as follows.

Definition

Let (V , ρ) be a reflection representation of (W , S).
If the reflection vectors {αs | s ∈ S} form a basis for V , then we call
(V , ρ) a generalized geometric representation of (W ,S).

In what follows we present the classification theorem over the base field C.
But the same results also hold over R.
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The classification of all refl. repn’s of Coxeter groups

Theorem (H. 2021)

The isom. classes of gen. geom. repn’s of (W , S) is parameterized by{(
(kst)s,t∈S,s 6=t , χ

) ∣∣ kst = kts ∈ N, 1 ≤ kst ≤ mst
2 , ∀s, t ∈ S , s 6= t;

χ : H1(G̃ ,Z)→ C× is a character
}
,

where G̃ is a simple graph determined by the numbers (kst)s,t∈S ,s 6=t :

set of vertices: S ,

set of edges: {s — t | kst < mst
2 },

and H1(G̃ ,Z) is the first integral homology group of G̃ .

In general, any reflection representation of (W ,S) can be realized as a
quotient representation (by a subrepresentation with trivial group action)
of a generalized geometric representation of certain quotient group of W .

Hongsheng Hu (BICMR, PKU) Refl. repns. of Coxeter groups Nov. 10–14, 2023 @ SUSTech 10 / 26



Backgrounds Classification of refl. repns. Lusztig’s function a Steinberg’s theorem

The homology group H1(G̃ ,Z) is a finitely generated free abelian group.

Thus the set of characters χ : H1(G̃ ,Z)→ C× is identified to a torus

(C×)r where r = rankH1(G̃ ,Z).

Under this identification, we have:

Proposition (H. 2021)

Fix a set of parameters (kst)s,t∈S,s 6=t such that the graph G̃ is connected.

The characters of H1(G̃ ,Z) corresponding to reducible generalized
geometric representations form a “density zero” subset of (C×)r .
In other words, “most” gen. geom. repn’s are irreducible.

If a character χ corresponds to a reducible representation (V , ρ), then
V has a maximal subrepresentation with trivial W -action, and the
quotient is an irreducible reflection representation of (W , S).
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There are only a few reflection representations admitting a nonzero
W -invariant bilinear form.

Proposition (H. 2021)

Let (V , ρ) be a gen. geom. repn. of (W ,S) corresponding to the datum(
(kst)s,t∈S ,s 6=t , χ

)
.

Then there exists a nonzero W -invariant bilinear form on V if and only if

Imχ ⊆ {±1}.

In other words, there is no nonzero W -invariant bilinear form on “most”
generalized geometric representations.
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Example: The affine Weyl group

• Let W be the affine Weyl group Ã2,

W = 〈s0, s1, s2 | s2
0 = s2

1 = s2
2 = (s0s1)3 = (s1s2)3 = (s2s0)3 = e.〉

Then the parameters k01, k12, k02 have no choices other than 1.

The graph G̃ :
s1 s2

s0

• The homology group H1(G̃ ,Z) ' Z is generated by the cycle in G̃ .

• The set of characters of H1(G̃ ,Z) = {χ : Z→ C×} = C×.

• Gen. geom. repn’s
1 : 1←−−→ C×, and only two of them admit nonzero

W -invariant bilinear form, i.e., the two corresponding to ±1.

(The classical geom. repn. ↔ 1, this is the only reducible gen. geom. repn.)
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Remark:

In general, if mst =∞ for some s, t ∈ S , then in the classification of
generalized geometric representations, the range N ∩ [1, mst

2 ] of the
parameter kst is replaced by

C ∪ {∗1, ∗2},

and in the graph G̃ we have an edge s — t if and only if kst 6= 0.

We also have similar results as previous ones.
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• Coxeter group (W , S)  Hecke algebra H (an alg. over Z[v±1])

After specialization v 7→ 1, we obtain the group algebra
H⊗Z[v±1] C ' C[W ].

Thus a repn. (V , ρ) of W can be viewed as a repn. of H via ρ(v) = 1.

• H has a “good” basis {Cw | w ∈W } called Kazhdan–Lusztig basis,
indexed by elements of W .

Structure constants of KL basis  Lusztig’s function a : W → N

Definition

Let (V , ρ) be a representation of W . If there exists n ∈ N such that

ρ(Cw ) = 0 for any w with a(w) > n,

ρ(Cw ) 6= 0 for some w with a(w) = n,

then we say the representation (V , ρ) is of a-function value n.
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We give a characterization of representations of a-function value 1.

Theorem (H. 2021)

A representation (V , ρ) of W is of a-function value 1 ⇐⇒ @ v ∈ V \ {0}
such that s(v) = t(v) = −v for some s, t ∈ S with mst <∞.

Corollary (H. 2021)

Let (V , ρ) be a reflection representation of (W , S) with reflection vectors
{αs | s ∈ S}. Then (V , ρ) is of a-function value 1 if and only if αs and αt

are not proportional for any s, t ∈ S with mst <∞.

We may guess that the a-function value of a reflection representation is
determined by the linearly independence relation of the reflection vectors.
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For a specific class of Coxeter groups, we can determine all the irreducible
representations of a-function value 1.

Theorem (H. 2022)

Suppose (W , S) is simply laced and suppose there is at most one cycle on
its Coxeter graph, then any irreducible representation of a-function value 1
is “almost” a generalized geometric representation.

Here “almost” means that the reflection vectors {αs | s ∈ S} span the
representation space (not necessarily a basis) and they are not proportional
to each other.

Such representations are proved to be a quotient of some gen. geom. repn.
by a maximal subrepn. with trivial W -action, and they are classified in the
same manner.
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Notations:

V : an n-dim’l vector space with inner product (−|−),
e.g., a Euclidean space or a complex Hilbert space.

{v1, . . . , vn}: a basis of V (not necessarily orthonormal).

W : the subgroup of GL(V ) generated by orthogonal reflections si
w.r.t. vi , i = 1, . . . , n.

V is a W -module by the natural action.

The exterior power
∧d V , d = 0, 1, . . . , n, admits a W -action

w(u1 ∧ · · · ∧ ud) = (wu1) ∧ · · · ∧ (wud).

• Example:

(W , S): an irreducible finite Coxeter group,
V = Vgeom: the geometric representation.
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Theorem (R. Steinberg, 1968)

Suppose V is a simple W -module. Then the W -modules∧d V , d = 0, 1, . . . , n,

are simple and pairwise non-isomorphic.

The proof relies on the existence of the inner product which stays invariant
under the W -action, and do induction on n.

The theorem of Steinberg can be generalized to the cases where the inner
product does not exist.
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The first generalization

Recall that a reflection representation of (W ,S) is a representation (V , ρ)
such that ρ(s) is a reflection for each s ∈ S .

Theorem (H. 2023)

Let (V , ρ) be an n-dim’l irreducible reflection representation of (W , S).
Then the W -modules ∧d V , d = 0, 1, . . . , n,

are simple and pairwise non-isomorphic.

Unlike Steinberg’s proof, our proof is done by the following two points:

(1)
∧d V is semisimple,

(2) EndW (
∧d V ) = {scalar multiplication},

and the point (2) uses some combinatorics on digraphs.
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The second generalization

Exterior powers of different reflection representations are also different.

Theorem (H. 2023)

Let (V1, ρ1) and (V2, ρ2) be two irreducible reflection representations of
(W , S) of dim n1 and n2, respectively. If∧d1 V1 '

∧d2 V2

as W -modules for some d1, d2 with 0 < di < ni , then

d1 = d2 and (V1, ρ1) ' (V2, ρ2).

Remarks:

(1) In most cases there is not a W -invariant inner product on V .

(2) The reflection vectors {αs | s ∈ S} are not necessarily a basis of V .
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Apply to Coxeter groups

Recall that “most” reflection representations of a Coxeter group are
irreducible.

Therefore, we can apply our generalization of Steinberg’s theorem to all
the irreducible reflection representations of (W ,S), and obtain a lot of
pairwise non-isomorphic irreducible representations of W .

• It would be also an interesting problem to consider the a-function values
of these exterior powers.
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An informal problem (from the rainbow Turán problem)

Consider a regular graph Γ of degree n, and suppose Γ admits a proper
edge-coloring with n colors such that each color induces a perfect
matching.

Then each color gives a permutation of vertices by swapping two vertices
jointed by an edge of that color.

In this way the coloring gives an action of a Coxeter group on the vertices.

Let V be a vector space with a basis indexed by the set of vertices. Then
V is a representation of the group which seems interesting to study.

Does this group-action help in considering the rainbow Turán problem of
such a graph? e.g., avoiding rainbow cycles.

(This problem is communicated to me by Ruonan Li.)
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Thank you for your attention!
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