Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem

Reflection representations of Coxeter groups

胡泓昇 / Hongsheng Hu

Beijing International Center for Mathematical Research, Peking University (postdoc)

The Fourth International Conference on Groups, Graphs and Combinatorics Southern University of Science and Technology, Shenzhen, China Nov. 10–14, 2023

1/26

Backgrounds	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem

Outline

2 Classification of reflection representations of Coxeter groups.

8 Relation with Lusztig's function a (an informal section)

Backgrounds ●000	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem

Outline

2) Classification of reflection representations of Coxeter groups.

3 Relation with Lusztig's function *a* (an informal section)

4 A generalization of Steinberg's theorem on reflection representations.

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
0000			

Let (W, S) be a Coxeter group of finite rank, that is:

- S is a finite set;
- W is a group defined by a presentation (i.e., generators and relations)

$$egin{aligned} W &= \langle s \in S \mid s^2 = e, orall s \in S; \ (st)^{m_{st}} &= e, orall s, t \in S ext{ with } m_{st} < \infty
angle. \end{aligned}$$

where $(m_{st})_{s,t\in S,s\neq t}$ are given elements in $\mathbb{N}_{\geq 2} \cup \{\infty\}$ such that $m_{st} = m_{ts}$.

By convention, $m_{ss} := 1$, $\forall s \in S$.

A Coxeter group (W, S) is uniquely determined by the Coxeter graph:

- set of vertices: S,
- set of edges: s t if $m_{st} \ge 3$, and the edge is labelled by m_{st} .

For example, the symmetric group \mathfrak{S}_n with the generators $s_i := (i, i + 1)$, $i = 1, \dots, n-1$, is a Coxeter group with the corresponding Coxeter graph

$$S_1 S_2 \cdots S_{n-2} S_{n-1}$$

with all edges are labelled by 3.

• Historical interlude:

The concept of Coxeter groups originates from Euclidean reflection groups. H. S. M. Coxeter proved in 1930's that any discrete reflection group in a Euclidean space admits such a presentation.

Backgrounds (Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
0000	0000000	0000	0000000

Q: Can we realize any Coxeter group as a reflection group on some space? Let $V_{geom} = \bigoplus_{s \in S} \mathbb{R}\alpha_s$ endowed with a bilinear form

$$(lpha_{s}|lpha_{t}):=-\cosrac{\pi}{m_{st}},\quad \forall s,t\in S.$$

(c.f. Bourbaki 1968) V_{geom} is a reflection representation of W via

$$s(\alpha_t) := \alpha_t - 2(\alpha_t | \alpha_s) \alpha_s, \quad \forall s, t \in S.$$

The bilinear form (-|-) is *W*-invariant, i.e., (wv|wu) = (v|u).

• Remark:

Although we have a W-invariant bilinear form on V_{geom} , but it is not an inner product in general. It is an inner product if and only if W is a finite group.

Q: Can we find out and classify all the "reflection representations" of a Coxeter group (W, S)?

Backgrounds	Classification of refl. repns. •0000000	Lusztig's function <i>a</i> 0000	Steinberg's theorem
Outline			

2 Classification of reflection representations of Coxeter groups.

3 Relation with Lusztig's function a (an informal section)

4 A generalization of Steinberg's theorem on reflection representations.

7 / 26

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
	0000000		

Definitions:

- An involutive linear map s on an finite dim'l vector space V is called a *reflection* if
 - (1) there exists a linear hyperplane H_s such that $s|_{H_s} = Id_{H_s}$,
 - (2) there exists a nonzero vector α_s such that $s(\alpha_s) = -\alpha_s$.
- The hyperplane H_s is called the *reflection hyperplane* of s, and the vector α_s is called a *reflection vector* of s.
- A representation ρ : W → GL(V) is called a reflection representation of (W, S) if ρ(s) is a reflection on V for any s ∈ S.

8 / 26

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
	0000000		

For simplicity in presentation, we assume $m_{st} < \infty$, $\forall s, t \in S$, and consider a specific class of reflection representations defined as follows.

Definition

Let (V, ρ) be a reflection representation of (W, S). If the reflection vectors $\{\alpha_s \mid s \in S\}$ form a basis for V, then we call (V, ρ) a generalized geometric representation of (W, S).

In what follows we present the classification theorem over the base field \mathbb{C} . But the same results also hold over \mathbb{R} .

The classification of all refl. repn's of Coxeter groups

Theorem (H. 2021)

The isom. classes of gen. geom. repn's of (W, S) is parameterized by

$$\begin{split} \left\{ \left((k_{st})_{s,t\in\mathcal{S},s\neq t},\chi\right) \ \middle| \ k_{st} &= k_{ts}\in\mathbb{N}, 1\leq k_{st}\leq \frac{m_{st}}{2}, \ \forall s,t\in\mathcal{S},s\neq t; \\ \chi: \mathcal{H}_1(\widetilde{G},\mathbb{Z})\to\mathbb{C}^\times \text{ is a character} \right\}, \end{split}$$

where \widetilde{G} is a simple graph determined by the numbers $(k_{st})_{s,t\in S,s\neq t}$:

- set of vertices: S,
- set of edges: $\{s t \mid k_{st} < \frac{m_{st}}{2}\},\$

and $H_1(\widetilde{G},\mathbb{Z})$ is the first integral homology group of \widetilde{G} .

In general, any reflection representation of (W, S) can be realized as a quotient representation (by a subrepresentation with trivial group action) of a generalized geometric representation of certain quotient group of W.

Hongsheng Hu (BICMR, PKU)

Refl. repns. of Coxeter groups

The homology group $H_1(\widetilde{G}, \mathbb{Z})$ is a finitely generated free abelian group. Thus the set of characters $\chi : H_1(\widetilde{G}, \mathbb{Z}) \to \mathbb{C}^{\times}$ is identified to a torus

 $(\mathbb{C}^{\times})^r$ where $r = \operatorname{rank} H_1(\widetilde{G}, \mathbb{Z})$.

Under this identification, we have:

Proposition (H. 2021)

Fix a set of parameters $(k_{st})_{s,t\in S,s\neq t}$ such that the graph \widetilde{G} is connected.

- The characters of H₁(G, Z) corresponding to reducible generalized geometric representations form a "density zero" subset of (C[×])^r. In other words, "most" gen. geom. repn's are irreducible.
- If a character χ corresponds to a reducible representation (V, ρ) , then V has a maximal subrepresentation with trivial W-action, and the quotient is an irreducible reflection representation of (W, S).

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
	00000000		

There are only a few reflection representations admitting a nonzero W-invariant bilinear form.

Proposition (H. 2021)

Let (V, ρ) be a gen. geom. repn. of (W, S) corresponding to the datum

 $((k_{st})_{s,t\in S,s\neq t},\chi).$

Then there exists a nonzero W-invariant bilinear form on V if and only if

 $\operatorname{Im} \chi \subseteq \{\pm 1\}.$

In other words, there is no nonzero W-invariant bilinear form on "most" generalized geometric representations.

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
0000	00000000	0000	0000000

Example: The affine Weyl group

• Let W be the affine Weyl group A_{2} ,

$$W = \langle s_0, s_1, s_2 \mid s_0^2 = s_1^2 = s_2^2 = (s_0 s_1)^3 = (s_1 s_2)^3 = (s_2 s_0)^3 = e. \rangle$$

Then the parameters k_{01} , k_{12} , k_{02} have no choices other than 1.

The graph \widetilde{G} : $s_1 \longrightarrow s_2$

- The homology group $H_1(\widetilde{G},\mathbb{Z})\simeq\mathbb{Z}$ is generated by the cycle in \widetilde{G} .
- The set of characters of $H_1(\widetilde{G},\mathbb{Z}) = \{\chi : \mathbb{Z} \to \mathbb{C}^{\times}\} = \mathbb{C}^{\times}.$

• Gen. geom. repn's $\stackrel{1:1}{\longleftrightarrow} \mathbb{C}^{\times}$, and only two of them admit nonzero *W*-invariant bilinear form, i.e., the two corresponding to ± 1 .

(The classical geom. repn. \leftrightarrow 1, this is the only reducible gen. geom. repn.)

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
	0000000		

Remark:

In general, if $m_{st} = \infty$ for some $s, t \in S$, then in the classification of generalized geometric representations, the range $\mathbb{N} \cap [1, \frac{m_{st}}{2}]$ of the parameter k_{st} is replaced by

$$\mathbb{C}\cup\{*_1,*_2\},$$

and in the graph \widetilde{G} we have an edge s - t if and only if $k_{st} \neq 0$. We also have similar results as previous ones.

Backgrounds 0000	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem

Outline

2 Classification of reflection representations of Coxeter groups.

8 Relation with Lusztig's function a (an informal section)

4 A generalization of Steinberg's theorem on reflection representations.

• Coxeter group $(W, S) \rightsquigarrow$ Hecke algebra \mathcal{H} (an alg. over $\mathbb{Z}[v^{\pm 1}]$) After specialization $v \mapsto 1$, we obtain the group algebra $\mathcal{H} \otimes_{\mathbb{Z}[v^{\pm 1}]} \mathbb{C} \simeq \mathbb{C}[W]$.

Thus a repn. (V, ρ) of W can be viewed as a repn. of \mathcal{H} via $\rho(v) = 1$.

• \mathcal{H} has a "good" basis $\{C_w \mid w \in W\}$ called Kazhdan–Lusztig basis, indexed by elements of W.

Structure constants of KL basis \rightsquigarrow Lusztig's function $\boldsymbol{a}: W \rightarrow \mathbb{N}$

Definition

Let (V, ρ) be a representation of W. If there exists $n \in \mathbb{N}$ such that

- $\rho(C_w) = 0$ for any w with a(w) > n,
- $\rho(C_w) \neq 0$ for some w with a(w) = n,

then we say the representation (V, ρ) is of **a**-function value *n*.

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
0000	0000000	0000	0000000

We give a characterization of representations of a-function value 1.

Theorem (H. 2021)

A representation (V, ρ) of W is of **a**-function value $1 \iff \nexists v \in V \setminus \{0\}$ such that s(v) = t(v) = -v for some $s, t \in S$ with $m_{st} < \infty$.

Corollary (H. 2021)

Let (V, ρ) be a reflection representation of (W, S) with reflection vectors $\{\alpha_s \mid s \in S\}$. Then (V, ρ) is of **a**-function value 1 if and only if α_s and α_t are not proportional for any $s, t \in S$ with $m_{st} < \infty$.

We may guess that the a-function value of a reflection representation is determined by the linearly independence relation of the reflection vectors.

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
0000	0000000	0000	0000000

For a specific class of Coxeter groups, we can determine all the irreducible representations of a-function value 1.

Theorem (H. 2022)

Suppose (W, S) is simply laced and suppose there is at most one cycle on its Coxeter graph, then any irreducible representation of *a*-function value 1 is "almost" a generalized geometric representation.

Here "almost" means that the reflection vectors $\{\alpha_s \mid s \in S\}$ span the representation space (not necessarily a basis) and they are not proportional to each other.

Such representations are proved to be a quotient of some gen. geom. repn. by a maximal subrepn. with trivial W-action, and they are classified in the same manner.

Backgrounds 0000	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem ●000000

Outline

2 Classification of reflection representations of Coxeter groups.

3 Relation with Lusztig's function *a* (an informal section)

A generalization of Steinberg's theorem on reflection representations.

Backgrounds	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem ○●○○○○○
Notations:			

- V: an n-dim'l vector space with inner product (-|-),
 e.g., a Euclidean space or a complex Hilbert space.
- $\{v_1, \ldots, v_n\}$: a basis of V (not necessarily orthonormal).
- W: the subgroup of GL(V) generated by orthogonal reflections s_i w.r.t. v_i, i = 1,..., n.

V is a W-module by the natural action.

The exterior power $\bigwedge^d V$, $d = 0, 1, \dots, n$, admits a *W*-action

$$w(u_1 \wedge \cdots \wedge u_d) = (wu_1) \wedge \cdots \wedge (wu_d).$$

• Example:

(W, S): an irreducible finite Coxeter group, $V = V_{geom}$: the geometric representation.

Backgrounds	Classification of refl. repns.	Lusztig's function a	Steinberg's theorem
			000000

Theorem (R. Steinberg, 1968)

Suppose V is a simple W-module. Then the W-modules

$$\bigwedge^d V, \quad d=0,1,\ldots,n,$$

are simple and pairwise non-isomorphic.

The proof relies on the existence of the inner product which stays invariant under the W-action, and do induction on n.

The theorem of Steinberg can be generalized to the cases where the inner product does not exist.

21/26

Backgrounds	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem

The first generalization

Recall that a reflection representation of (W, S) is a representation (V, ρ) such that $\rho(s)$ is a reflection for each $s \in S$.

Theorem (H. 2023)

Let (V, ρ) be an *n*-dim'l irreducible reflection representation of (W, S). Then the *W*-modules

$$\bigwedge^d V, \quad d=0,1,\ldots,n,$$

are simple and pairwise non-isomorphic.

Unlike Steinberg's proof, our proof is done by the following two points: (1) $\bigwedge^d V$ is semisimple, (2) End_W($\bigwedge^d V$) = {scalar multiplication}, and the point (2) uses some combinatorics on digraphs.

Lusztig's function *a*

Steinberg's theorem

The second generalization

Exterior powers of different reflection representations are also different.

Theorem (H. 2023)

Let (V_1, ρ_1) and (V_2, ρ_2) be two irreducible reflection representations of (W, S) of dim n_1 and n_2 , respectively. If

$$\bigwedge^{d_1} V_1 \simeq \bigwedge^{d_2} V_2$$

as W-modules for some d_1, d_2 with $0 < d_i < n_i$, then

$$d_1 = d_2$$
 and $(V_1, \rho_1) \simeq (V_2, \rho_2)$.

Remarks:

(1) In most cases there is not a *W*-invariant inner product on *V*.
(2) The reflection vectors {α_s | s ∈ S} are not necessarily a basis of *V*.

Lusztig's function *a*

Apply to Coxeter groups

Recall that "most" reflection representations of a Coxeter group are irreducible.

Therefore, we can apply our generalization of Steinberg's theorem to all the irreducible reflection representations of (W, S), and obtain a lot of pairwise non-isomorphic irreducible representations of W.

• It would be also an interesting problem to consider the *a*-function values of these exterior powers.

An informal problem (from the rainbow Turán problem)

Consider a regular graph Γ of degree n, and suppose Γ admits a proper edge-coloring with n colors such that each color induces a perfect matching.

Then each color gives a permutation of vertices by swapping two vertices jointed by an edge of that color.

In this way the coloring gives an action of a Coxeter group on the vertices.

Let V be a vector space with a basis indexed by the set of vertices. Then V is a representation of the group which seems interesting to study.

Does this group-action help in considering the rainbow Turán problem of such a graph? e.g., avoiding rainbow cycles.

(This problem is communicated to me by Ruonan Li.)

Backgrounds	Classification of refl. repns.	Lusztig's function <i>a</i>	Steinberg's theorem

- H. Hu. Reflection representations of Coxeter groups and homology of Coxeter graphs. Preprint, arXiv:2306.12846, 2023.
- H. Hu. Representations of Coxeter groups of Lusztig's *a*-function value 1. Preprint, arXiv:2309.00593, 2023.
- H. Hu. On exterior powers of reflection representations. Bull. Aust. Math. Soc., online, 2023.
- H. Hu. On exterior powers of reflection representations, II. In preparation.

Thank you for your attention!

Related papers