Coxeter Groups and Their Reflection Representations

胡泓昇 / Hongsheng Hu

Beijing International Center for Mathematical Research

Postdoc Seminar November 28, 2022

- The concept of Coxeter groups is an algebraic abstract of reflection groups.
- Reflection representations of Coxeter groups.
- Relationship to Lusztig's *a*-function; infinite dimensional representations.

Reflections

- $E = \mathbb{R}^n$ Euclidean space, with inner product $(\cdot|\cdot)$.
- $\alpha \in E$ such that $|\alpha| = 1$.
- $H_{\alpha} = \langle \alpha \rangle^{\perp} \ni 0$ the hyperplane perpendicular to α .
- The (linear) reflection w.r.t. α is a linear map σ_{α} defined by

$$\sigma_{\alpha} : E \to E$$
$$x \mapsto x - (x|\alpha)\alpha$$

Reflections

- $E = \mathbb{R}^n$ Euclidean space, with inner product $(\cdot|\cdot)$.
- $\alpha \in E$ such that $|\alpha| = 1$.
- $H_{\alpha} = \langle \alpha \rangle^{\perp} \ni 0$ the hyperplane perpendicular to α .
- The (linear) reflection w.r.t. α is a linear map σ_{α} defined by

$$\sigma_{\alpha}: E \to E$$
$$x \mapsto x - (x|\alpha)\alpha$$

Facts

σ_α(α) = -α.
σ_α|_{Hα} = Id_{Hα}.
σ²_α = Id_E, thus σ_α ∈ GL(E).
(σ_αx|σ_αy) = (x|y), ∀x, y ∈ E, i.e. σ_α ∈ O(E).
.....

Question: Given a set of reflections $S = \{\sigma_{\alpha_i} | i \in I\}$, what is the group $\langle S \rangle$ generated by S?

Facts

σ_α(α) = -α.
σ_α|_{H_α} = Id_{H_α}.
σ²_α = Id_E, thus σ_α ∈ GL(E).
(σ_αx|σ_αy) = (x|y), ∀x, y ∈ E, i.e. σ_α ∈ O(E).
.....

Question: Given a set of reflections $S = \{\sigma_{\alpha_i} | i \in I\}$, what is the group $\langle S \rangle$ generated by S?

- s, t two reflections $\implies s^2 = t^2 = \text{Id.}$
- $st = \text{rotation by angle } \pi/3 \text{ (anticlockwise)} \implies$ $(st)^6 = \text{Id}, \text{ i.e. } ststst = tststs \text{ (braid relation)}.$
- $\bullet\,$ The symmetric group $\mathbb S$ of the hexagon consists of

 $\{\mathrm{Id}, st, (st)^2, (st)^3, (st)^4, (st)^5, s, (st)s, (st)^2s, (st)^3s, (st)^4s, (st)^5s\}$

- s, t two reflections $\implies s^2 = t^2 = \text{Id.}$
- $st = \text{rotation by angle } \pi/3 \text{ (anticlockwise)} \implies (st)^6 = \text{Id, i.e. } ststst = tststs \text{ (braid relation).}$
- $\bullet\,$ The symmetric group $\mathbb S$ of the hexagon consists of

 $\{\mathrm{Id}, st, (st)^2, (st)^3, (st)^4, (st)^5, s, (st)s, (st)^2s, (st)^3s, (st)^4s, (st)^5s\}$

H. Hu (BICMR)

- s, t two reflections $\implies s^2 = t^2 = \text{Id.}$
- $st = \text{rotation by angle } \pi/3 \text{ (anticlockwise)} \implies (st)^6 = \text{Id, i.e. } ststst = tststs \text{ (braid relation).}$
- $\bullet\,$ The symmetric group $\mathbb S$ of the hexagon consists of

 $\{\mathrm{Id}, st, (st)^2, (st)^3, (st)^4, (st)^5, s, (st)s, (st)^2s, (st)^3s, (st)^4s, (st)^5s\}$

• The group $\mathbb S$ admits the following presentation

$$\mathbb{S} = \langle s, t | e = s^2 = t^2 = (st)^6 \rangle$$

(i.e. generated by s and t, subject to those relations)

• This presentation can be simply encoded in a labelled graph:

 $\bullet\,$ The group $\mathbb S$ admits the following presentation

$$\mathbb{S} = \langle s, t | e = s^2 = t^2 = (st)^6 \rangle$$

(i.e. generated by s and t, subject to those relations)

• This presentation can be simply encoded in a labelled graph:

Example: Finite dihedral (二面体) groups

More generally, a finite dihedral group $I_2(m)$ is defined by

$$I_2(m) = \langle s, t | e = s^2 = t^2 = (st)^m \rangle$$

The corresponding graph:

Example: Infinite dihedral group

Suppose in the Euclidean plane, we have two lines forming an angle $a\pi/2$, where $a \in (0,1) \setminus \mathbb{Q}$,

then st =rotation by $a\pi \implies \nexists m \in \mathbb{N}$ s.t. $(st)^m =$ Id.

The group $\langle s,t
angle$ is

$$\langle s,t|e=s^2=t^2\rangle=:\mathrm{I}_2(\infty)$$

The corresponding graph:

Example: Infinite dihedral group

Suppose in the Euclidean plane, we have two lines forming an angle $a\pi/2$, where $a \in (0,1) \setminus \mathbb{Q}$,

then st =rotation by $a\pi \implies \nexists m \in \mathbb{N}$ s.t. $(st)^m =$ Id.

The group $\langle s, t \rangle$ is

$$\langle s, t | e = s^2 = t^2 \rangle =: I_2(\infty)$$

The corresponding graph:

H. Hu (BICMR)

• s, t, r three reflections $\implies s^2 = t^2 = r^2 = \text{Id.}$

• st = a rotation by $\pi/2$: $\implies (st)^4 = \text{Id.}$

H. Hu (BICMR)

Coxeter Grps. & Refl. Reps.

• sr = a rotation by π :

 $\implies (sr)^2 = \text{Id}, \text{ i.e. } sr = rs.$

• tr = a rotation by $2\pi/3$:

 $\implies (tr)^3 = \mathrm{Id}.$

• The symmetric group \mathbb{S} of the cube is generated by s, t, r. (Since any automorphism of the cube is determined by the image of

the corner $\frac{1}{2}$, and one can transfer this corner to anywhere in any posture using compositions of s, t, r.)

• In fact,

$$\mathbb{S} = \langle s, t, r | e = s^2 = t^2 = r^2 = (st)^4 = (sr)^2 = (tr)^3 \rangle$$

(It would take some effort to see this. One could write down all elements; alternatively, use the theory of root system.)

• The corresponding graph:

There is no edge between s and r, indicating sr = rs commuting.

The symmetric group S of the cube is generated by s, t, r.
 (Since any automorphism of the cube is determined by the image of

the corner $\frac{1}{2}$, and one can transfer this corner to anywhere in any posture using compositions of s, t, r.)

In fact,

$$\mathbb{S} = \langle s, t, r | e = s^2 = t^2 = r^2 = (st)^4 = (sr)^2 = (tr)^3 \rangle$$

(It would take some effort to see this. One could write down all elements; alternatively, use the theory of root system.)

• The corresponding graph:

There is no edge between s and r, indicating sr = rs commuting.

• The symmetric group \mathbb{S} of the cube is generated by s, t, r. (Since any automorphism of the cube is determined by the image of

the corner $\frac{1}{2}$, and one can transfer this corner to anywhere in any posture using compositions of s,t,r.)

In fact,

$$\mathbb{S} = \langle s, t, r | e = s^2 = t^2 = r^2 = (st)^4 = (sr)^2 = (tr)^3 \rangle$$

(It would take some effort to see this. One could write down all elements; alternatively, use the theory of root system.)

• The corresponding graph:

There is no edge between s and r, indicating sr = rs commuting.

H. Hu (BICMR)

Let $s_i = (i, i+1)$ be the transposition, $i = 1, 2, \ldots, n-1$.

- $(12)^2 = \text{Id.}$
- $(12)(34) = (34)(12) \implies (s_1s_3)^2 = \text{Id.}$
- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}$, i.e. $s_1s_2s_1 = s_2s_1s_2$.
- The symmetric group \$\mathcal{S}_n\$ is generated by \$s_1, s_2 \ldots, s_{n-1}\$.
 In fact.

$$\mathfrak{S}_{n} = \langle s_{1}, \dots, s_{n-1} | s_{i}^{2} = e, \forall i = 1, \dots, n-1;$$

$$s_{i}s_{j} = s_{j}s_{i}, \forall |i-j| > 1;$$

$$s_{i}s_{i+1}s_{i} = s_{i+1}s_{i}s_{i+1}, \forall i = 1, \dots, n-2 \rangle$$

• The corresponding graph (the labels "3" on edges are omitted):

H. Hu (BICMR)

Coxeter Grps. & Refl. Reps

Let $s_i = (i, i+1)$ be the transposition, $i = 1, 2, \ldots, n-1$.

• $(12)^2 = \text{Id.}$

•
$$(12)(34) = (34)(12) \implies (s_1s_3)^2 =$$
Id.

- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}$, i.e. $s_1s_2s_1 = s_2s_1s_2$.
- The symmetric group \$\mathcal{S}_n\$ is generated by \$s_1, s_2 \ldots, s_{n-1}\$.
 In fact,

$$\mathfrak{S}_{n} = \langle s_{1}, \dots, s_{n-1} | s_{i}^{2} = e, \forall i = 1, \dots, n-1; \\ s_{i}s_{j} = s_{j}s_{i}, \forall |i-j| > 1; \\ s_{i}s_{i+1}s_{i} = s_{i+1}s_{i}s_{i+1}, \forall i = 1, \dots, n-2 \rangle$$

• The corresponding graph (the labels "3" on edges are omitted):

H. Hu (BICMR)

Coxeter Grps. & Refl. Reps.

Let $s_i = (i, i+1)$ be the transposition, $i = 1, 2, \ldots, n-1$.

• $(12)^2 = \text{Id.}$

•
$$(12)(34) = (34)(12) \implies (s_1s_3)^2 = \text{Id.}$$

- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}, \text{ i.e. } s_1s_2s_1 = s_2s_1s_2.$
- The symmetric group \$\vec{\mathcal{S}}_n\$ is generated by \$s_1, s_2 \ldots, s_{n-1}\$.
 In fact,

$$\mathfrak{S}_{n} = \langle s_{1}, \dots, s_{n-1} | s_{i}^{2} = e, \forall i = 1, \dots, n-1;$$

$$s_{i}s_{j} = s_{j}s_{i}, \forall |i-j| > 1;$$

$$s_{i}s_{i+1}s_{i} = s_{i+1}s_{i}s_{i+1}, \forall i = 1, \dots, n-2 \rangle$$

• The corresponding graph (the labels "3" on edges are omitted):

Let $s_i = (i, i+1)$ be the transposition, $i = 1, 2, \ldots, n-1$.

• $(12)^2 = \text{Id.}$

•
$$(12)(34) = (34)(12) \implies (s_1s_3)^2 = \text{Id.}$$

- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}, \text{ i.e. } s_1s_2s_1 = s_2s_1s_2.$
- The symmetric group \$\mathcal{S}_n\$ is generated by \$s_1, s_2 \ldots, s_{n-1}\$.
 In fact,

$$\mathfrak{S}_{n} = \langle s_{1}, \dots, s_{n-1} | s_{i}^{2} = e, \forall i = 1, \dots, n-1;$$

$$s_{i}s_{j} = s_{j}s_{i}, \forall |i-j| > 1;$$

$$s_{i}s_{i+1}s_{i} = s_{i+1}s_{i}s_{i+1}, \forall i = 1, \dots, n-2 \rangle$$

• The corresponding graph (the labels "3" on edges are omitted):

$$\underbrace{\bigcirc}_{s_1 \ s_2} \ \cdots \ \underbrace{\bigcirc}_{s_{n-2} \ s_{n-1}}$$

H. Hu (BICMR)

Coxeter Grps. & Refl. Reps.

 s_1, \ldots, s_{n-1} can be realized as Euclidean reflections as well.

$$\mathfrak{S}_n \hookrightarrow \operatorname{GL}(\mathbb{R}^n)$$

 $s_i \mapsto \operatorname{swapping} e_i \text{ and } e_{i+1}$
i.e. reflection w.r.t. $e_i - e_{i+1}$

where $\{e_1, \ldots, e_n\}$ is the standard orthonormal basis of \mathbb{R}^n .

Coxeter groups

Each presentation we have seen is determined by a set S of *involutions* and a set of numbers $\{m_{st}\}_{s,t\in S,s\neq t}$ such that $\forall s,t\in S$, $s\neq t$,

- $m_{st} = m_{ts}$,
- $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}.$

Definition

Given S and (m_{st}) as above, the group

$$W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle$$

is called a Coxeter group.

Here the relation $(st)^{m_{st}} = e$ is equivalent to $\underbrace{sts\cdots}_{m_{st} \text{ factors}} = \underbrace{tst\cdots}_{m_{st} \text{ factors}}$ (braid

relation)

Coxeter groups

Each presentation we have seen is determined by a set S of *involutions* and a set of numbers $\{m_{st}\}_{s,t\in S,s\neq t}$ such that $\forall s,t\in S$, $s\neq t$,

•
$$m_{st} = m_{ts}$$
,

• $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}.$

Definition

Given S and (m_{st}) as above, the group

$$W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle$$

is called a Coxeter group.

Here the relation
$$(st)^{m_{st}} = e$$
 is equivalent to $\underbrace{sts\cdots}_{m_{st} \text{ factors}} = \underbrace{tst\cdots}_{m_{st} \text{ factors}}$ (braid

relation).

The presentation can be encoded in a labelled graph:

• Vertices set: S.

• Labelled edges:
$$s \frac{m_{st}}{t}$$
 if $m_{st} \ge 3$.
(The label is usually omitted if $m_{st} = 3$.)

This graph is called the Coxeter graph of (W, S).

We name these objects after Coxeter because of his following work:

The presentation can be encoded in a labelled graph:

• Vertices set: S.

• Labelled edges:
$$s \frac{m_{st}}{t}$$
 if $m_{st} \ge 3$.
(The label is usually omitted if $m_{st} = 3$.)

This graph is called the Coxeter graph of (W, S).

We name these objects after Coxeter because of his following work:

Theorem (H. S. M. Coxeter, 1934, 1935)

Let E be a Euclidean space. Any discrete subgroup of GL(E) generated by (linear) reflections is finite, and has a presentation of the form

$$W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle$$

- ② Any finite group with such a presentation is a subgroup of GL(E) generated by reflections for some Euclidean space E.
- Such a group is one of the following, or a product of several of them:

Theorem (H. S. M. Coxeter, 1934, 1935)

Let E be a Euclidean space. Any discrete subgroup of GL(E) generated by (linear) reflections is finite, and has a presentation of the form

$$W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle$$

- Any finite group with such a presentation is a subgroup of GL(E) generated by reflections for some Euclidean space E.
- Such a group is one of the following, or a product of several of them:

Theorem (H. S. M. Coxeter, 1934, 1935)

Let E be a Euclidean space. Any discrete subgroup of GL(E) generated by (linear) reflections is finite, and has a presentation of the form

$$W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle$$

- Any finite group with such a presentation is a subgroup of GL(E) generated by reflections for some Euclidean space E.
- Such a group is one of the following, or a product of several of them:

Platonic solids

There are only 3 finite Coxeter groups with connected Coxeter graph such that |S|=3, i.e. $\rm A_3,~B_3,~H_3.$

The group of type A_3 is \mathfrak{S}_4 , which is the symmetric group of a regular tetrahedron (四面体).

0-----0

Platonic solids

There are only 3 finite Coxeter groups with connected Coxeter graph such that |S|=3, i.e. $\rm A_3,~B_3,~H_3.$

The group of type A_3 is \mathfrak{S}_4 , which is the symmetric group of a regular tetrahedron (四面体).

Tetrahedron

The group of type B_3 is the symmetric group of a cube/regular octahedron (八面体).

The group of type H_3 is the symmetric group of a regular dodecahedron/icosahedron (十二面体/二十面体).

Question: Given a Coxeter group (W, S) in general, can we realize W as a "reflection group" acting on some linear space?

• Let $V_{\mathsf{Tits}} = \bigoplus_{s \in S} \mathbb{R} \alpha_s$. Define a bilinear form $(\cdot | \cdot)$ on V_{Tits} by

$$(\alpha_s | \alpha_t) = -\cos\frac{\pi}{m_{st}},$$

here we regard $-\cos\frac{\pi}{\infty} = -1$, and $m_{ss} = 1$.

- In particular, (α_s|α_s) = 1, and (·|·) is symmetric. (But NOT Euclidean in general!)
- $\forall s \in S$, define

$$\rho(s): V_{\mathsf{Tits}} \to V_{\mathsf{Tits}}$$
$$x \mapsto x - 2(x|\alpha_s)\alpha_s$$

Question: Given a Coxeter group (W, S) in general, can we realize W as a "reflection group" acting on some linear space?

• Let $V_{\mathsf{Tits}} = \bigoplus_{s \in S} \mathbb{R} \alpha_s$. Define a bilinear form $(\cdot | \cdot)$ on V_{Tits} by

$$(\alpha_s | \alpha_t) = -\cos\frac{\pi}{m_{st}},$$

here we regard $-\cos\frac{\pi}{\infty} = -1$, and $m_{ss} = 1$.

- In particular, (α_s|α_s) = 1, and (·|·) is symmetric. (But NOT Euclidean in general!)
- $\forall s \in S$, define

$$\rho(s): V_{\mathsf{Tits}} \to V_{\mathsf{Tits}}$$
$$x \mapsto x - 2(x|\alpha_s)\alpha_s$$

Question: Given a Coxeter group (W, S) in general, can we realize W as a "reflection group" acting on some linear space?

• Let $V_{\mathsf{Tits}} = \bigoplus_{s \in S} \mathbb{R} \alpha_s$. Define a bilinear form $(\cdot | \cdot)$ on V_{Tits} by

$$(\alpha_s | \alpha_t) = -\cos\frac{\pi}{m_{st}},$$

here we regard $-\cos\frac{\pi}{\infty} = -1$, and $m_{ss} = 1$.

 In particular, (α_s|α_s) = 1, and (·|·) is symmetric. (But NOT Euclidean in general!)

• $\forall s \in S$, define

$$\begin{split} \rho(s): V_{\mathsf{Tits}} &\to V_{\mathsf{Tits}} \\ x &\mapsto x - 2(x|\alpha_s)\alpha_s \end{split}$$

Proposition

- $\label{eq:product} \bullet \ \rho: W \to \operatorname{GL}(V_{\mathsf{Tits}}) \text{ is a well defined representation of } W.$
- $\label{eq:started} \ensuremath{ {\rm \ensuremath{ 2.5 } } } (wx|wy) = (x|y) \text{, } \forall w \in W \text{, } \forall x,y \in V_{\mathsf{Tits}}.$
- ρ is faithful: $W \hookrightarrow \operatorname{GL}(V_{\mathsf{Tits}})$. (W is realized as a "reflection group" on V_{Tits} .)
- |W| < ∞ if and only if (·|·) is positive definite, i.e. (V_{Tits}, (·|·)) is Euclidean.

Proposition

- $\label{eq:product} \bullet \ \rho: W \to \operatorname{GL}(V_{\mathsf{Tits}}) \text{ is a well defined representation of } W.$
- $(wx|wy) = (x|y), \ \forall w \in W, \ \forall x, y \in V_{\mathsf{Tits}}.$
- ρ is faithful: $W \hookrightarrow GL(V_{\mathsf{Tits}})$. (W is realized as a "reflection group" on V_{Tits} .)
- |W| < ∞ if and only if (·|·) is positive definite, i.e. (V_{Tits}, (·|·)) is Euclidean.

Proposition

 $\label{eq:product} \bullet \ \rho: W \to \operatorname{GL}(V_{\mathsf{Tits}}) \text{ is a well defined representation of } W.$

$$(wx|wy) = (x|y), \ \forall w \in W, \ \forall x, y \in V_{\mathsf{Tits}}.$$

•
$$\rho$$
 is faithful: $W \hookrightarrow \operatorname{GL}(V_{\mathsf{Tits}})$.
(W is realized as a "reflection group" on V_{Tits} .)

• $|W| < \infty$ if and only if $(\cdot|\cdot)$ is positive definite, i.e. $(V_{\mathsf{Tits}}, (\cdot|\cdot))$ is Euclidean.

Definition

- A representation V of (W, S) is called a *reflection representation* if $\forall s \in S$, s acts by a "reflection", namely:
 - \exists a subspace $H_s \subseteq V$ of $\operatorname{codim} 1$ s.t. $s|_{H_s} = \operatorname{Id}_{H_s}$;
 - $\exists \alpha_s \in V \setminus H_s \text{ s.t. } s(\alpha_s) = -\alpha_s.$
- ② A reflection representation V is called an *R*-representation if {α_s|s ∈ S} spans V, and for any s, t ∈ S such that $m_{st} < \infty$ it holds dim(α_s, α_t) = 2.

S A reflection representation V is called an *IR-representation* if $\{\alpha_s | s \in S\}$ forms a basis of V. In particular, dim V = |S|.

Definition

- A representation V of (W, S) is called a *reflection representation* if $\forall s \in S$, s acts by a "reflection", namely:
 - \exists a subspace $H_s \subseteq V$ of codim 1 s.t. $s|_{H_s} = \mathrm{Id}_{H_s}$;
 - $\exists \alpha_s \in V \setminus H_s \text{ s.t. } s(\alpha_s) = -\alpha_s.$
- ② A reflection representation V is called an *R*-representation if {α_s|s ∈ S} spans V, and for any s, t ∈ S such that $m_{st} < \infty$ it holds dim(α_s, α_t) = 2.

③ A reflection representation V is called an *IR-representation* if $\{\alpha_s | s \in S\}$ forms a basis of V. In particular, dim V = |S|.

Definition

- A representation V of (W, S) is called a *reflection representation* if $\forall s \in S$, s acts by a "reflection", namely:
 - \exists a subspace $H_s \subseteq V$ of codim 1 s.t. $s|_{H_s} = \mathrm{Id}_{H_s}$;
 - $\exists \alpha_s \in V \setminus H_s \text{ s.t. } s(\alpha_s) = -\alpha_s.$
- ② A reflection representation V is called an *R*-representation if {α_s|s ∈ S} spans V, and for any s, t ∈ S such that $m_{st} < \infty$ it holds dim(α_s, α_t) = 2.
- A reflection representation V is called an *IR-representation* if $\{\alpha_s | s \in S\}$ forms a basis of V. In particular, dim V = |S|.

For convenience, assume $m_{st} < \infty$, $\forall s, t \in S$.

Theorem (Classification of IR-representations, H. 2021)

The isomorphism classes of IR-representations one-to-one correspond to the following data:

$$\left\{ \left((k_{st})_{s,t\in S, s\neq t}, \chi \right) \middle| 1 \le k_{st} = k_{ts} \le \frac{m_{st}}{2}, \forall s, t \in S, s \neq t; \\ \chi : \mathrm{H}_1(\widetilde{G}, \mathbb{Z}) \to \mathbb{R}^{\times} \text{ is a character} \right\},$$

where G is a (undirected, unlabelled) graph with

• vertices set: S;

• edges set: s—t for those $k_{st} < m_{st}/2$.

and $H_1(G,\mathbb{Z})$ is the 1-st homology group with integral coefficient.

For convenience, assume $m_{st} < \infty$, $\forall s, t \in S$.

Theorem (Classification of IR-representations, H. 2021)

The isomorphism classes of IR-representations one-to-one correspond to the following data:

$$\begin{split} \left\{ \left((k_{st})_{s,t\in S, s\neq t}, \chi \right) \Big| 1 \leq k_{st} = k_{ts} \leq \frac{m_{st}}{2}, \forall s, t \in S, s \neq t; \\ \chi : \mathrm{H}_1(\widetilde{G}, \mathbb{Z}) \to \mathbb{R}^{\times} \text{ is a character} \right\}, \end{split}$$

where \widetilde{G} is a (undirected, unlabelled) graph with

- vertices set: S;
- edges set: s—t for those $k_{st} < m_{st}/2$.

and $H_1(\widetilde{G},\mathbb{Z})$ is the 1-st homology group with integral coefficient.

Theorem (Continued)

There exists a nonzero W-invariant bilinear form (·|·) on an IR-representation V if and only if Im χ ⊆ {±1}. In this case, (·|·) is symmetric and unique up to a scalar, and the action of s ∈ S on V is the reflection w.r.t. α_s under (·|·):

$$\sigma_{\alpha_s}: x \mapsto x - 2 \frac{(x|\alpha_s)}{(\alpha_s|\alpha_s)} \alpha_s, \forall x \in V.$$

- Seach R-representation is a quotient of a unique IR-representation by a subrepresentation with trivial W-action.
- Isomorphism classes of *semisimple* R-representations one-to-one correspond to isomorphism classes of IR-representations.

Theorem (Continued)

Preventional and the prevention of the second seco

$$\sigma_{\alpha_s}: x \mapsto x - 2 \frac{(x|\alpha_s)}{(\alpha_s|\alpha_s)} \alpha_s, \forall x \in V.$$

- Seach R-representation is a quotient of a unique IR-representation by a subrepresentation with trivial W-action.
- Isomorphism classes of *semisimple* R-representations one-to-one correspond to isomorphism classes of IR-representations.

Reflection representations

Main idea: The two dimensional subspace $\langle \alpha_s, \alpha_t \rangle$ forms a subrepresentation $\rho_{k_{st}}$ of the dihedral group $\langle s, t \rangle$, determined by a number $1 \leq k_{st} \leq m_{st}/2$.

Thus V can be regarded as a "gluing" of a number of representations of various dihedral subgroups of W.

The character χ encodes "the way of gluing".

Reflection representations

Main idea: The two dimensional subspace $\langle \alpha_s, \alpha_t \rangle$ forms a subrepresentation $\rho_{k_{st}}$ of the dihedral group $\langle s, t \rangle$, determined by a number $1 \leq k_{st} \leq m_{st}/2$.

Thus V can be regarded as a "gluing" of a number of representations of various dihedral subgroups of W.

The character χ encodes "the way of gluing".

H. Hu (BICMR)

The construction of IR-representations motivates us to construct infinite dimensional irreducible representations of some Coxeter groups, using some covering graph of the Coxeter graph.

For example, the following is a universal covering of graphs,

The construction of IR-representations motivates us to construct infinite dimensional irreducible representations of some Coxeter groups, using some covering graph of the Coxeter graph.

For example, the following is a universal covering of graphs,

What is further? (1. Infinite dimensional representations)

Let $V = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} \langle \alpha_{s,n}, \alpha_{r,n}, \alpha_{t,n} \rangle$, define the action of s, t, r such that: $\alpha_{r,0}, \alpha_{t,0}$ span a representation ρ_2 of $\langle r, t \rangle$; $\alpha_{t,0}, \alpha_{s,1}$ span a representation ρ_1 of $\langle t, s \rangle$;

Then V is an irreducible representation of W of infinite dimension.

H. Hu (BICMR)

What is further? (1. Infinite dimensional representations)

Let $V = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} \langle \alpha_{s,n}, \alpha_{r,n}, \alpha_{t,n} \rangle$, define the action of s, t, r such that: $\alpha_{r,0}, \alpha_{t,0}$ span a representation ρ_2 of $\langle r, t \rangle$; $\alpha_{t,0}, \alpha_{s,1}$ span a representation ρ_1 of $\langle t, s \rangle$;

Then V is an irreducible representation of W of infinite dimension.

H. Hu (BICMR)

Proposition (H. 2022)

If the Coxeter graph G of (W, S) satisfies one of the following, then W admits infinite dimensional irreducible representations (over \mathbb{C}).

- G has at least two circuits.
- 2 G has at least one circuit, and $m_{st} \ge 4$ for some $s, t \in S$.

Conjecture

All irreducible representations of W (over \mathbb{C}) are all finite dimensional if and only if W is a finite group or an affine Weyl group.

Proposition (H. 2022)

If the Coxeter graph G of (W, S) satisfies one of the following, then W admits infinite dimensional irreducible representations (over \mathbb{C}).

- G has at least two circuits.
- 2 G has at least one circuit, and $m_{st} \ge 4$ for some $s, t \in S$.

Conjecture

All irreducible representations of W (over \mathbb{C}) are all finite dimensional if and only if W is a finite group or an affine Weyl group.

What is further? (2. Lusztig's *a*-function)

Kazhdan-Lusztig basis (1979): $\{C_w | w \in W\}$ a basis of $\mathbb{R}[W]$.

Lusztig's *a*-function (1985): a function $a: W \to \mathbb{N}$.

(Concrete definitions are omitted.)

It was conjectured that the function a is bounded on W if $|S| < \infty$.

Proposition (H. 2021)

Let V be a reflection representation. The following are equivalent:

- V is an R-representation.
- 2) $\forall w \in W$, if a(w) > 1, then $C_w V = 0$.

I guess that the proportionality of those reflection vectors $\{\alpha_s\}_s$ is related to Lusztig's *a*-function.

If so, the sign representation $(s \mapsto -1, \forall s \in S)$, the smallest reflection representation) would be helpful to the boundedness conjecture.

What is further? (2. Lusztig's *a*-function)

Kazhdan-Lusztig basis (1979): $\{C_w | w \in W\}$ a basis of $\mathbb{R}[W]$.

Lusztig's *a*-function (1985): a function $a: W \to \mathbb{N}$.

(Concrete definitions are omitted.)

It was conjectured that the function a is bounded on W if $|S| < \infty$.

Proposition (H. 2021)

Let V be a reflection representation. The following are equivalent:

 \bigcirc V is an R-representation.

2 $\forall w \in W$, if a(w) > 1, then $C_w V = 0$.

I guess that the proportionality of those reflection vectors $\{\alpha_s\}_s$ is related to Lusztig's *a*-function.

If so, the sign representation $(s \mapsto -1, \forall s \in S)$, the smallest reflection representation) would be helpful to the boundedness conjecture.

H. Hu (BICMR)

What is further? (2. Lusztig's *a*-function)

Kazhdan-Lusztig basis (1979): $\{C_w | w \in W\}$ a basis of $\mathbb{R}[W]$.

Lusztig's *a*-function (1985): a function $a: W \to \mathbb{N}$.

(Concrete definitions are omitted.)

It was conjectured that the function a is bounded on W if $|S| < \infty$.

Proposition (H. 2021)

Let V be a reflection representation. The following are equivalent:

 \bigcirc V is an R-representation.

2)
$$\forall w \in W$$
, if $a(w) > 1$, then $C_w V = 0$.

I guess that the proportionality of those reflection vectors $\{\alpha_s\}_s$ is related to Lusztig's *a*-function.

If so, the sign representation ($s \mapsto -1$, $\forall s \in S$, the smallest reflection representation) would be helpful to the boundedness conjecture.

Thank you!