Coxeter Groups and Their Reflection Representations

胡泓昇 / Hongsheng Hu

Beijing International Center for Mathematical Research

Postdoc Seminar November 28, 2022

- The concept of Coxeter groups is an algebraic abstract of reflection groups.
- Reflection representations of Coxeter groups.
- Relationship to Lusztig's a -function; infinite dimensional representations.

Reflections

- $E=\mathbb{R}^n$ Euclidean space, with inner product $(\cdot|\cdot).$
- $\bullet \ \alpha \in E$ such that $|\alpha| = 1$.
- $H_{\alpha}=\langle \alpha \rangle^{\perp}\ni 0$ the hyperplane perpendicular to $\alpha.$
- The (linear) reflection w.r.t. α is a linear map σ_{α} defined by

$$
\sigma_{\alpha}: E \to E
$$

$$
x \mapsto x - (x|\alpha)\alpha
$$

Reflections

- $E=\mathbb{R}^n$ Euclidean space, with inner product $(\cdot|\cdot).$
- $\bullet \ \alpha \in E$ such that $|\alpha| = 1$.
- $H_{\alpha}=\langle \alpha \rangle^{\perp}\ni 0$ the hyperplane perpendicular to $\alpha.$
- The (linear) reflection w.r.t. α is a linear map σ_{α} defined by

$$
\sigma_{\alpha}: E \to E
$$

$$
x \mapsto x - (x|\alpha)\alpha
$$

Facts

 \bullet $\sigma_{\alpha}(\alpha) = -\alpha$. $\sigma_{\alpha}|_{H_{\alpha}} = \mathrm{Id}_{H_{\alpha}}.$ **3** $\sigma_{\alpha}^2 = \text{Id}_E$, thus $\sigma_{\alpha} \in \text{GL}(E)$. $\Phi(\sigma_\alpha x | \sigma_\alpha y) = (x | y), \forall x, y \in E$, i.e. $\sigma_\alpha \in O(E)$. ⁵

Question: Given a set of reflections $S = {\lbrace \sigma_{\alpha_i} | i \in I \rbrace}$, what is the group $\langle S \rangle$ generated by S ?

Facts

 \bullet $\sigma_{\alpha}(\alpha) = -\alpha$. $\sigma_{\alpha}|_{H_{\alpha}} = \mathrm{Id}_{H_{\alpha}}.$ **3** $\sigma_{\alpha}^2 = \text{Id}_E$, thus $\sigma_{\alpha} \in \text{GL}(E)$. \bullet $(\sigma_{\alpha} x | \sigma_{\alpha} y) = (x | y), \forall x, y \in E$, i.e. $\sigma_{\alpha} \in O(E)$. ⁵

Question: Given a set of reflections $S = \{ \sigma_{\alpha_i} | i \in I \}$, what is the group $\langle S \rangle$ generated by S ?

s, t two reflections $\implies s^2 = t^2 = \text{Id}.$

- $st =$ rotation by angle $\pi/3$ (anticlockwise) \implies $(st)^6 = \text{Id}$, i.e. ststst = tststs (braid relation).
- The symmetric group S of the hexagon consists of

 $\{ \mathrm{Id}, st, (st)^2, (st)^3, (st)^4, (st)^5, s, (st)s, (st)^2s, (st)^3s, (st)^4s, (st)^5s \}$

- s, t two reflections $\implies s^2 = t^2 = \text{Id}.$
- $st =$ rotation by angle $\pi/3$ (anticlockwise) \implies $(st)^6 = Id$, i.e. $ststst = tststs$ (braid relation).
- The symmetric group S of the hexagon consists of

 $\{ \mathrm{Id}, st, (st)^2, (st)^3, (st)^4, (st)^5, s, (st)s, (st)^2s, (st)^3s, (st)^4s, (st)^5s \}$

- s, t two reflections $\implies s^2 = t^2 = \text{Id}.$
- $st =$ rotation by angle $\pi/3$ (anticlockwise) \implies $(st)^6 = Id$, i.e. $ststst = tststs$ (braid relation).
- \bullet The symmetric group $\mathcal S$ of the hexagon consists of

 $\{\mathrm{Id}, st, (st)^2, (st)^3, (st)^4, (st)^5, s, (st)s, (st)^2s, (st)^3s, (st)^4s, (st)^5s\}$

• The group S admits the following presentation

$$
\mathbb{S} = \langle s, t | e = s^2 = t^2 = (st)^6 \rangle
$$

(i.e. generated by s and t, subject to those relations)

This presentation can be simply encoded in a labelled graph:

• The group S admits the following presentation

$$
\mathbb{S} = \langle s, t | e = s^2 = t^2 = (st)^6 \rangle
$$

(i.e. generated by s and t, subject to those relations)

This presentation can be simply encoded in a labelled graph:

Example: Finite dihedral (二面体) groups

More generally, a finite dihedral group $I_2(m)$ is defined by

$$
I_2(m) = \langle s, t | e = s^2 = t^2 = (st)^m \rangle
$$

The corresponding graph:

Example: Infinite dihedral group

Suppose in the Euclidean plane, we have two lines forming an angle $a\pi/2$. where $a \in (0,1) \setminus \mathbb{Q}$,

then $st =$ rotation by $a\pi \implies \nexists m \in \mathbb{N}$ s.t. $(st)^m = \text{Id}$.

The group $\langle s, t \rangle$ is

$$
\langle s, t | e = s^2 = t^2 \rangle =: \mathcal{I}_2(\infty)
$$

The corresponding graph:

Example: Infinite dihedral group

Suppose in the Euclidean plane, we have two lines forming an angle $a\pi/2$. where $a \in (0,1) \setminus \mathbb{Q}$,

then $st =$ rotation by $a\pi \implies \nexists m \in \mathbb{N}$ s.t. $(st)^m = \text{Id}$.

The group $\langle s, t \rangle$ is

$$
\langle s, t | e = s^2 = t^2 \rangle =: \mathcal{I}_2(\infty)
$$

The corresponding graph:

 s, t, r three reflections $\implies s^2 = t^2 = r^2 = \text{Id}.$

• $st = \text{a rotation by } \pi/2$: \implies $(st)^4 = Id.$

• $sr = a$ rotation by π :

 \implies $(sr)^2 =$ Id, i.e. $sr = rs$.

 \bullet tr = a rotation by $2\pi/3$:

 \implies $(tr)^3 = Id.$

• The symmetric group S of the cube is generated by s, t, r . (Since any automorphism of the cube is determined by the image of

the corner \overrightarrow{f} , and one can transfer this corner to anywhere in any posture using compositions of s, t, r .)

• In fact,

$$
S = \langle s, t, r | e = s^2 = t^2 = r^2 = (st)^4 = (sr)^2 = (tr)^3 \rangle
$$

(It would take some effort to see this. One could write down all elements; alternatively, use the theory of root system.)

• The corresponding graph:

There is no edge between s and r, indicating $sr = rs$ commuting.

• The symmetric group S of the cube is generated by s, t, r . (Since any automorphism of the cube is determined by the image of

the corner \overrightarrow{f} , and one can transfer this corner to anywhere in any posture using compositions of s, t, r .)

• In fact,

$$
\mathbb{S} = \langle s, t, r | e = s^2 = t^2 = r^2 = (st)^4 = (sr)^2 = (tr)^3 \rangle
$$

(It would take some effort to see this. One could write down all elements; alternatively, use the theory of root system.)

• The corresponding graph:

There is no edge between s and r, indicating $sr = rs$ commuting.

• The symmetric group S of the cube is generated by s, t, r . (Since any automorphism of the cube is determined by the image of

the corner \overrightarrow{f} , and one can transfer this corner to anywhere in any posture using compositions of s, t, r .)

• In fact.

$$
\mathbb{S} = \langle s, t, r | e = s^2 = t^2 = r^2 = (st)^4 = (sr)^2 = (tr)^3 \rangle
$$

(It would take some effort to see this. One could write down all elements; alternatively, use the theory of root system.)

• The corresponding graph:

There is no edge between s and r, indicating $sr = rs$ commuting.

Example: Symmetric group \mathfrak{S}_n of $\{1,2,\ldots,n\}$

Let $s_i = (i, i + 1)$ be the transposition, $i = 1, 2, \ldots, n - 1$.

- $(12)^2 = Id.$
- $(12)(34) = (34)(12) \implies (s_1 s_3)^2 = \text{Id}.$
- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}$, i.e. $s_1s_2s_1 = s_2s_1s_2$.
- The symmetric group \mathfrak{S}_n is generated by $s_1, s_2 \ldots, s_{n-1}$.

• In fact,

$$
\mathfrak{S}_n = \langle s_1, \dots, s_{n-1} | s_i^2 = e, \forall i = 1, \dots, n-1; s_i s_j = s_j s_i, \forall |i - j| > 1; s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \forall i = 1, \dots, n-2 \rangle
$$

The corresponding graph (the labels "3" on edges are omitted):

$$
\begin{array}{cccc}\n0 & 0 & \cdots & 0 & 0 \\
s_1 & s_2 & & s_{n-2} & s_{n-1}\n\end{array}
$$

Example: Symmetric group \mathfrak{S}_n of $\{1,2,\ldots,n\}$

Let $s_i = (i, i + 1)$ be the transposition, $i = 1, 2, \ldots, n - 1$.

• $(12)^2 = Id$.

•
$$
(12)(34) = (34)(12) \implies (s_1s_3)^2 = \text{Id}.
$$

- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}$, i.e. $s_1s_2s_1 = s_2s_1s_2$.
- The symmetric group \mathfrak{S}_n is generated by $s_1, s_2 \ldots, s_{n-1}$. • In fact,

$$
\mathfrak{S}_n = \langle s_1, \dots, s_{n-1} | s_i^2 = e, \forall i = 1, \dots, n-1; s_i s_j = s_j s_i, \forall |i-j| > 1; s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \forall i = 1, \dots, n-2 \rangle
$$

The corresponding graph (the labels "3" on edges are omitted):

$$
\begin{array}{ccc}\n0 & 0 & \cdots & 0 \\
s_1 & s_2 & \cdots & s_{n-2} & s_{n-1}\n\end{array}
$$

Example: Symmetric group \mathfrak{S}_n of $\{1,2,\ldots,n\}$

Let $s_i = (i, i + 1)$ be the transposition, $i = 1, 2, \ldots, n - 1$.

• $(12)^2 = Id$.

•
$$
(12)(34) = (34)(12) \implies (s_1s_3)^2 = \text{Id}.
$$

- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}$, i.e. $s_1s_2s_1 = s_2s_1s_2$.
- The symmetric group \mathfrak{S}_n is generated by $s_1, s_2 \ldots, s_{n-1}$. • In fact,

$$
\mathfrak{S}_n = \langle s_1, \dots, s_{n-1} | s_i^2 = e, \forall i = 1, \dots, n-1; s_i s_j = s_j s_i, \forall |i - j| > 1; s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \forall i = 1, \dots, n-2 \rangle
$$

The corresponding graph (the labels "3" on edges are omitted):

$$
\begin{array}{cccc}\n0 & 0 & \cdots & 0 & 0 \\
s_1 & s_2 & & s_{n-2} & s_{n-1}\n\end{array}
$$

Example: Symmetric group \mathfrak{S}_n of $\{1, 2, \ldots, n\}$

Let $s_i = (i, i + 1)$ be the transposition, $i = 1, 2, \ldots, n - 1$.

• $(12)^2 = Id$.

•
$$
(12)(34) = (34)(12) \implies (s_1s_3)^2 = \text{Id}.
$$

- $(12)(23) = (123) \implies (s_1s_2)^3 = \text{Id}$, i.e. $s_1s_2s_1 = s_2s_1s_2$.
- The symmetric group \mathfrak{S}_n is generated by $s_1, s_2 \ldots, s_{n-1}$. • In fact,

$$
\mathfrak{S}_n = \langle s_1, \dots, s_{n-1} | s_i^2 = e, \forall i = 1, \dots, n-1; s_i s_j = s_j s_i, \forall |i-j| > 1; s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \forall i = 1, \dots, n-2 \rangle
$$

The corresponding graph (the labels "3" on edges are omitted):

$$
\begin{array}{ccc}\n\bigcirc \hspace{-0.5cm} \bigcirc \hspace{-0
$$

Example: Symmetric group \mathfrak{S}_n of $\{1, 2, \ldots, n\}$

 s_1, \ldots, s_{n-1} can be realized as Euclidean reflections as well.

$$
\mathfrak{S}_n \hookrightarrow \text{GL}(\mathbb{R}^n)
$$

$$
s_i \mapsto \text{swapping } e_i \text{ and } e_{i+1}
$$

i.e. reflection w.r.t. $e_i - e_{i+1}$

where $\{e_1,\ldots,e_n\}$ is the standard orthonormal basis of \mathbb{R}^n .

Coxeter groups

Each presentation we have seen is determined by a set S of *involutions* and a set of numbers $\{m_{st}\}_{s,t\in S,s\neq t}$ such that $\forall s,t\in S$, $s\neq t$,

$$
\bullet \ \ m_{st}=m_{ts},
$$

$$
\bullet \ \ m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}.
$$

Given S and (m_{st}) as above, the group

$$
W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle
$$

is called a Coxeter group.

Here the relation $(st)^{m_{st}} = e$ is equivalent to $(st \cdots) = tst \cdots$ (braid $\overbrace{m_{st}}^{\overbrace{m_{st}}}$ factors

relation).

Coxeter groups

Each presentation we have seen is determined by a set S of *involutions* and a set of numbers $\{m_{st}\}_{s,t\in S,s\neq t}$ such that $\forall s,t\in S$, $s\neq t$,

$$
\bullet \ \ m_{st}=m_{ts},
$$

$$
\bullet \ \ m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}.
$$

Definition

Given S and (m_{st}) as above, the group

$$
W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle
$$

is called a Coxeter group.

Here the relation
$$
(st)^{m_{st}} = e
$$
 is equivalent to $\underbrace{sts \cdots}_{m_{st} \text{ factors}} = \underbrace{tst \cdots}_{m_{st} \text{ factors}}$ (braid)

relation).

The presentation can be encoded in a labelled graph:

 \bullet Vertices set: S .

• Labelled edges:
$$
s \frac{m_{st}}{m_{st}} t
$$
 if $m_{st} \geq 3$. (The label is usually omitted if $m_{st} = 3$.)

This graph is called the Coxeter graph of (W, S) .

We name these objects after Coxeter because of his following work:

The presentation can be encoded in a labelled graph:

 \bullet Vertices set: S .

• Labelled edges:
$$
s \frac{m_{st}}{m_{st}} t
$$
 if $m_{st} \geq 3$. (The label is usually omitted if $m_{st} = 3$.)

This graph is called the Coxeter graph of (W, S) .

We name these objects after Coxeter because of his following work:

Theorem (H. S. M. Coxeter, 1934, 1935)

1 Let E be a Euclidean space. Any discrete subgroup of $GL(E)$ generated by (linear) reflections is finite, and has a presentation of the form

$$
W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle
$$

- **2** Any finite group with such a presentation is a subgroup of $GL(E)$ generated by reflections for some Euclidean space E .
- ³ Such a group is one of the following, or a product of several of them:

Theorem (H. S. M. Coxeter, 1934, 1935)

1 Let E be a Euclidean space. Any discrete subgroup of $GL(E)$ generated by (linear) reflections is finite, and has a presentation of the form

$$
W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle
$$

2 Any finite group with such a presentation is a subgroup of $GL(E)$ generated by reflections for some Euclidean space E .

³ Such a group is one of the following, or a product of several of them:

Theorem (H. S. M. Coxeter, 1934, 1935)

1 Let E be a Euclidean space. Any discrete subgroup of $GL(E)$ generated by (linear) reflections is finite, and has a presentation of the form

$$
W = \langle S | s^2 = e, \forall s \in S; (st)^{m_{st}} = e, \forall s, t \in S, s \neq t \rangle
$$

- **2** Any finite group with such a presentation is a subgroup of $GL(E)$ generated by reflections for some Euclidean space E .
- **3** Such a group is one of the following, or a product of several of them:

Platonic solids

There are only 3 finite Coxeter groups with connected Coxeter graph such that $|S| = 3$, i.e. A_3 , B_3 , H_3 .

The group of type A_3 is \mathfrak{S}_4 , which is the symmetric group of a regular tetrahedron (四面体).

Platonic solids

There are only 3 finite Coxeter groups with connected Coxeter graph such that $|S| = 3$, i.e. A_3 , B_3 , H_3 .

The group of type A_3 is \mathfrak{S}_4 , which is the symmetric group of a regular tetrahedron (四面体).

Tetrahedron

The group of type B_3 is the symmetric group of a cube/regular octahedron (八面体).

The group of type H_3 is the symmetric group of a regular dodecahedron/icosahedron (十二面体/二十面体).

Question: Given a Coxeter group (W, S) in general, can we realize W as a "reflection group" acting on some linear space?

Let $V_{\mathsf{Tits}} = \bigoplus_{s \in S} \mathbb{R} \alpha_s$. Define a bilinear form $(\cdot | \cdot)$ on V_{Tits} by

$$
(\alpha_s|\alpha_t) = -\cos\frac{\pi}{m_{st}},
$$

here we regard $-\cos\frac{\pi}{\infty} = -1$, and $m_{ss} = 1$.

- In particular, $(\alpha_s|\alpha_s) = 1$, and $(\cdot|\cdot)$ is symmetric. (But NOT Euclidean in general!)
- $\bullet \forall s \in S$, define

$$
\rho(s) : V_{\text{Tits}} \to V_{\text{Tits}}
$$

$$
x \mapsto x - 2(x|\alpha_s)\alpha_s
$$

Question: Given a Coxeter group (W, S) in general, can we realize W as a "reflection group" acting on some linear space?

Let $V_{\mathsf{Tits}} = \bigoplus_{s \in S} \mathbb{R} \alpha_s$. Define a bilinear form $(\cdot | \cdot)$ on V_{Tits} by

$$
(\alpha_s|\alpha_t) = -\cos\frac{\pi}{m_{st}},
$$

here we regard $-\cos \frac{\pi}{\infty} = -1$, and $m_{ss} = 1$.

• In particular, $(\alpha_s|\alpha_s) = 1$, and $(\cdot|\cdot)$ is symmetric. (But NOT Euclidean in general!)

 $\bullet \forall s \in S$, define

$$
\rho(s) : V_{\text{Tits}} \to V_{\text{Tits}}
$$

$$
x \mapsto x - 2(x|\alpha_s)\alpha_s
$$

Question: Given a Coxeter group (W, S) in general, can we realize W as a "reflection group" acting on some linear space?

Let $V_{\mathsf{Tits}} = \bigoplus_{s \in S} \mathbb{R} \alpha_s$. Define a bilinear form $(\cdot | \cdot)$ on V_{Tits} by

$$
(\alpha_s|\alpha_t) = -\cos\frac{\pi}{m_{st}},
$$

here we regard $-\cos \frac{\pi}{\infty} = -1$, and $m_{ss} = 1$.

• In particular, $(\alpha_s|\alpha_s) = 1$, and $(\cdot|\cdot)$ is symmetric. (But NOT Euclidean in general!)

 $\bullet \ \forall s \in S$, define

$$
\rho(s): V_{\mathsf{Tits}} \to V_{\mathsf{Tits}}\\ x \mapsto x - 2(x|\alpha_s)\alpha_s
$$

Proposition

- \bullet $\rho: W \to \text{GL}(V_{\text{Tits}})$ is a well defined representation of W.
- $2 (wx|wy) = (x|y), \forall w \in W, \forall x, y \in V$ _{Tits}.
- \bullet ρ is faithful: $W \hookrightarrow GL(V_{\text{Tits}})$. (W is realized as a "reflection group" on V_{Tits} .)
- \bigcirc $|W| < \infty$ if and only if $(\cdot | \cdot)$ is positive definite, i.e. $(V_{\text{Tits}}, (\cdot | \cdot))$ is Euclidean.

Proposition

 \bullet $\rho: W \to \text{GL}(V_{\text{Tits}})$ is a well defined representation of W.

$$
\bullet \ (wx|wy) = (x|y), \ \forall w \in W, \ \forall x, y \in V_{\mathsf{Tits}}.
$$

- \bullet ρ is faithful: $W \hookrightarrow GL(V_{\text{Tits}})$. (W is realized as a "reflection group" on V_{Tits} .)
- \bigcirc $|W| < \infty$ if and only if $(\cdot | \cdot)$ is positive definite, i.e. $(V_{\text{Tits}}, (\cdot | \cdot))$ is Euclidean.

Proposition

 \bullet $\rho: W \to \text{GL}(V_{\text{Tits}})$ is a well defined representation of W.

$$
\bullet \ (wx|wy) = (x|y), \ \forall w \in W, \ \forall x, y \in V_{\mathsf{Tits}}.
$$

- \bullet ρ is faithful: $W \hookrightarrow GL(V_{\text{Tits}})$. (W is realized as a "reflection group" on V_{Tits} .)
- \bigcirc $|W| < \infty$ if and only if $(\cdot | \cdot)$ is positive definite, i.e. $(V_{\text{Tits}}, (\cdot | \cdot))$ is Euclidean.

Definition

- \bullet A representation V of (W, S) is called a reflection representation if $\forall s \in S$, s acts by a "reflection", namely:
	- \exists a subspace $H_s \subseteq V$ of $\operatorname{codim} 1$ s.t. $s|_{H_s} = \operatorname{Id}_{H_s};$

•
$$
\exists \alpha_s \in V \setminus H_s \text{ s.t. } s(\alpha_s) = -\alpha_s.
$$

 \bullet A reflection representation V is called an R-representation if $\{\alpha_s | s \in S\}$ spans V, and for any $s, t \in S$ such that $m_{st} < \infty$ it holds

 \bullet A reflection representation V is called an IR-representation if $\{\alpha_s | s \in S\}$ forms a basis of V. In particular, $\dim V = |S|$.

Definition

- \bullet A representation V of (W, S) is called a reflection representation if $\forall s \in S$, s acts by a "reflection", namely:
	- \exists a subspace $H_s \subseteq V$ of $\operatorname{codim} 1$ s.t. $s|_{H_s} = \operatorname{Id}_{H_s};$
	- $\bullet \ \exists \alpha_s \in V \setminus H_s \text{ s.t. } s(\alpha_s) = -\alpha_s.$
- \bullet A reflection representation V is called an R-representation if $\{\alpha_s | s \in S\}$ spans V, and for any $s, t \in S$ such that $m_{st} < \infty$ it holds $\dim \langle \alpha_s, \alpha_t \rangle = 2.$

 \bullet A reflection representation V is called an IR-representation if $\{\alpha_s | s \in S\}$ forms a basis of V. In particular, $\dim V = |S|$.

Definition

- \bullet A representation V of (W, S) is called a reflection representation if $\forall s \in S$, s acts by a "reflection", namely:
	- \exists a subspace $H_s \subseteq V$ of $\operatorname{codim} 1$ s.t. $s|_{H_s} = \operatorname{Id}_{H_s};$
	- $\bullet \ \exists \alpha_s \in V \setminus H_s \text{ s.t. } s(\alpha_s) = -\alpha_s.$
- \bullet A reflection representation V is called an R-representation if $\{\alpha_s | s \in S\}$ spans V, and for any $s, t \in S$ such that $m_{st} < \infty$ it holds $\dim \langle \alpha_s, \alpha_t \rangle = 2.$
- \bullet A reflection representation V is called an IR-representation if $\{\alpha_s | s \in S\}$ forms a basis of V. In particular, $\dim V = |S|$.

For convenience, assume $m_{st} < \infty$, $\forall s, t \in S$.

1 The isomorphism classes of IR-representations one-to-one correspond to the following data:

$$
\{((k_{st})_{s,t \in S, s \neq t}, \chi) | 1 \le k_{st} = k_{ts} \le \frac{m_{st}}{2}, \forall s, t \in S, s \neq t; \chi: H_1(\widetilde{G}, \mathbb{Z}) \to \mathbb{R}^\times \text{ is a character} \},\
$$

where \tilde{G} is a (undirected, unlabelled) graph with

 \bullet vertices set: S :

• edges set: s —t for those $k_{st} < m_{st}/2$.

and $H_1(G, \mathbb{Z})$ is the 1-st homology group with integral coefficient.

For convenience, assume $m_{st} < \infty$, $\forall s, t \in S$.

Theorem (Classification of IR-representations, H. 2021)

1 The isomorphism classes of IR-representations one-to-one correspond to the following data:

$$
\{((k_{st})_{s,t\in S,s\neq t},\chi)\big|1\leq k_{st}=k_{ts}\leq \frac{m_{st}}{2},\forall s,t\in S,s\neq t;\\ \chi:\mathrm{H}_1(\widetilde{G},\mathbb{Z})\to\mathbb{R}^\times\text{ is a character}\},\
$$

where \widetilde{G} is a (undirected, unlabelled) graph with

- \bullet vertices set: S :
- e edges set: s —t for those $k_{st} < m_{st}/2$.

and $H_1(G, \mathbb{Z})$ is the 1-st homology group with integral coefficient.

Theorem (Continued)

2 There exists a nonzero W-invariant bilinear form $(\cdot|\cdot)$ on an IR-representation V if and only if $\text{Im } \chi \subseteq {\{\pm 1\}}$. In this case, $(\cdot|\cdot)$ is symmetric and unique up to a scalar, and the action of $s \in S$ on V is the reflection w.r.t. α_s under $(\cdot | \cdot)$:

$$
\sigma_{\alpha_s}: x \mapsto x - 2\frac{(x|\alpha_s)}{(\alpha_s|\alpha_s)}\alpha_s, \forall x \in V.
$$

- ³ Each R-representation is a quotient of a unique IR-representation by a subrepresentation with trivial W-action.
- **Isomorphism classes of semisimple R-representations one-to-one** correspond to isomorphism classes of IR-representations.

Theorem (Continued)

2 There exists a nonzero W-invariant bilinear form $(\cdot|\cdot)$ on an IR-representation V if and only if $\text{Im } \chi \subseteq {\{\pm 1\}}$. In this case, $(\cdot | \cdot)$ is symmetric and unique up to a scalar, and the action of $s \in S$ on V is the reflection w.r.t. α_s under $(\cdot | \cdot)$:

$$
\sigma_{\alpha_s}: x \mapsto x - 2\frac{(x|\alpha_s)}{(\alpha_s|\alpha_s)}\alpha_s, \forall x \in V.
$$

- **3** Each R-representation is a quotient of a unique IR-representation by a subrepresentation with trivial W -action.
- **4** Isomorphism classes of *semisimple* R-representations one-to-one correspond to isomorphism classes of IR-representations.

Reflection representations

Main idea: The two dimensional subspace $\langle \alpha_s, \alpha_t \rangle$ forms a subrepresentation $\rho_{k_{st}}$ of the dihedral group $\langle s, t \rangle$, determined by a number $1 \leq k_{st} \leq m_{st}/2$.

Thus V can be regarded as a "gluing" of a number of representations of various dihedral subgroups of W .

The character χ encodes "the way of gluing".

Reflection representations

Main idea: The two dimensional subspace $\langle \alpha_s, \alpha_t \rangle$ forms a subrepresentation $\rho_{k_{st}}$ of the dihedral group $\langle s, t \rangle$, determined by a number $1 \leq k_{st} \leq m_{st}/2$.

Thus V can be regarded as a "gluing" of a number of representations of various dihedral subgroups of W .

The character χ encodes "the way of gluing".

The construction of IR-representations motivates us to construct infinite dimensional irreducible representations of some Coxeter groups, using some covering graph of the Coxeter graph.

For example, the following is a universal covering of graphs,

The construction of IR-representations motivates us to construct infinite dimensional irreducible representations of some Coxeter groups, using some covering graph of the Coxeter graph.

For example, the following is a universal covering of graphs,

What is further? (1. Infinite dimensional representations)

Let $V=\bigoplus_{n\in\mathbb{Z}}\mathbb{C}\langle\alpha_{s,n},\alpha_{r,n},\alpha_{t,n}\rangle$, define the action of s,t,r such that: $\alpha_{r,0}, \alpha_{t,0}$ span a representation ρ_2 of $\langle r, t \rangle$; $\alpha_{t,0}, \alpha_{s,1}$ span a representation ρ_1 of $\langle t, s \rangle$;

Then V is an irreducible representation of W of infinite dimension.

What is further? (1. Infinite dimensional representations)

Let $V=\bigoplus_{n\in\mathbb{Z}}\mathbb{C}\langle\alpha_{s,n},\alpha_{r,n},\alpha_{t,n}\rangle$, define the action of s,t,r such that: $\alpha_{r,0}, \alpha_{t,0}$ span a representation ρ_2 of $\langle r, t \rangle$; $\alpha_{t,0}, \alpha_{s,1}$ span a representation ρ_1 of $\langle t, s \rangle$;

Then V is an irreducible representation of W of infinite dimension.

Proposition (H. 2022)

If the Coxeter graph G of (W, S) satisfies one of the following, then W admits infinite dimensional irreducible representations (over \mathbb{C}).

- \bullet G has at least two circuits.
- **■** G has at least one circuit, and $m_{st} > 4$ for some $s, t \in S$.

All irreducible representations of W (over $\mathbb C$) are all finite dimensional if and only if W is a finite group or an affine Weyl group.

Proposition (H. 2022)

If the Coxeter graph G of (W, S) satisfies one of the following, then W admits infinite dimensional irreducible representations (over C).

- \bullet G has at least two circuits.
- **②** *G* has at least one circuit, and $m_{st} \geq 4$ for some $s, t \in S$.

Conjecture

All irreducible representations of W (over $\mathbb C$) are all finite dimensional if and only if W is a finite group or an affine Weyl group.

What is further? (2. Lusztig's a -function)

Kazhdan-Lusztig basis (1979): $\{C_w | w \in W\}$ a basis of $\mathbb{R}[W]$.

Lusztig's a -function (1985): a function $a:W\to\mathbb{N}$.

(Concrete definitions are omitted.)

It was conjectured that the function a is bounded on W if $|S| < \infty$.

Let V be a reflection representation. The following are equivalent:

 \bullet V is an R-representation.

$$
\mathbf{P} \ \ \forall w \in W, \text{ if } \ \boldsymbol{a}(w) > 1, \text{ then } C_w V = 0.
$$

I guess that the proportionality of those reflection vectors $\{\alpha_s\}_s$ is related to Lusztig's a -function.

If so, the sign representation ($s \mapsto -1$, $\forall s \in S$, the smallest reflection representation) would be helpful to the boundedness conjecture.

What is further? (2. Lusztig's a -function)

Kazhdan-Lusztig basis (1979): $\{C_w | w \in W\}$ a basis of $\mathbb{R}[W]$.

Lusztig's a -function (1985): a function $a:W\to\mathbb{N}$.

(Concrete definitions are omitted.)

It was conjectured that the function a is bounded on W if $|S| < \infty$.

Proposition (H. 2021)

Let V be a reflection representation. The following are equivalent:

- \bullet V is an R-representation.
- 2 ∀w ∈ W, if $a(w) > 1$, then $C_wV = 0$.

I guess that the proportionality of those reflection vectors $\{\alpha_s\}_s$ is related to Lusztig's a -function.

If so, the sign representation ($s \mapsto -1$, $\forall s \in S$, the smallest reflection representation) would be helpful to the boundedness conjecture.

What is further? (2. Lusztig's a -function)

Kazhdan-Lusztig basis (1979): ${C_w|w \in W}$ a basis of $\mathbb{R}[W]$.

Lusztig's a -function (1985): a function $a:W\to\mathbb{N}$.

(Concrete definitions are omitted.)

It was conjectured that the function a is bounded on W if $|S| < \infty$.

Proposition (H. 2021)

Let V be a reflection representation. The following are equivalent:

 \bullet V is an R-representation.

```
2 \forall w \in W, if a(w) > 1, then C_w V = 0.
```
I guess that the proportionality of those reflection vectors $\{\alpha_s\}_s$ is related to Lusztig's a -function.

If so, the sign representation ($s \mapsto -1$, $\forall s \in S$, the smallest reflection representation) would be helpful to the boundedness conjecture.

Thank you!